65 resultados para Osteoblast
Resumo:
Prostate cancer is a significant health problem faced by aging men. Currently, diagnostic strategies for the detection of prostate cancer are either unreliable, yielding high numbers of false positive results, or too invasive to be used widely as screening tests. Furthermore, the current therapeutic strategies for the treatment of the disease carry considerable side effects. Although organ confined prostate cancer can be curable, most detectable clinical symptoms occur in advanced disease when primary tumour cells have metastasised to distant sites - usually lymph nodes and bone. Many growth factors and steroids assist the continued growth and maintenance of prostatic tumour cells. Of these mitogens, androgens are important in the development of the normal prostate but are also required to sustain the growth of prostate cancer cells in the early stage of the disease. Not only are androgens required in the early stage of disease, but also many other growth factors and hormones interact to cause uncontrolled proliferation of malignant cells. The early, androgen sensitive phase of disease is followed by an androgen insensitive phase, whereby androgens are no longer required to stimulate the growth of the tumour cells. Growth factors such as transforming growth factor and (TGF/), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), insulin-like growth factors (IGFs), Vitamin D and thyroid hormone have been suggested to be important at this stage of disease. Interestingly, some of the kallikrein family of genes, including prostate specific antigen (PSA), the current serum diagnostic marker for prostate cancer, are regulated by androgens and many of the aforementioned growth factors. The kallikrein gene family is a group of serine proteases that are involved in a diverse range of physiological processes: regulation of local blood flow, angiogenesis, tissue invasion and mitogenesis. The earliest members of the kallikrein gene family (KLK1-KLK3) have been strongly associated with general disease states, such as hypertension, inflammation, pancreatitis and renal disease, but are also linked to various cancers. Recently, this family was extended to include 15 genes (KLK1-15). Several newer members of the kallikrein family have been implicated in the carcinogenesis and tumour metastasis of hormone-dependent cancers such as prostate, breast, endometrial and ovarian cancer. The aims of this project were to investigate the expression of the newly identified kallikrein, KLK4, in benign and malignant prostate tissues, and prostate cancer cell lines. This thesis has demonstrated the elevated expression of KLK4 mRNA transcripts in malignant prostate tissue compared to benign prostates. Additionally, expression of the full length KLK4 transcript was detected in the androgen dependent prostate cancer cell line, LNCaP. Based on the above finding, the LNCaP cell line was chosen to assess the potential regulation of full length KLK4 by androgen, thyroid hormone and epidermal growth factor. KLK4 mRNA and protein was found to be up-regulated by androgen and a combination of androgen and thyroid hormone. Thyroid hormone alone produced no significant change in KLK4 mRNA or protein over the control. Epidermal growth factor treatment also resulted in elevated expression levels of KLK4 mRNA and protein. To assess the potential functional role(s) of KLK4/hK4 in processes associated with tumour progression, full length KLK4 was transfected into PC-3 cells - a prostate cancer cell line originally derived from a secondary bone lesion. The KLK4/hK4 over-expressing cells were assessed for their proliferation, migration, invasion and attachment properties. The KLK4 over-expressing clones exhibited a marked change in morphology, indicative of a more aggressive phenotype. The KLK4 clones were irregularly shaped with compromised adhesion to the growth surface. In contrast, the control cell lines (parent PC-3 and empty vector clones) retained a rounded morphology with obvious cell to cell adhesion, as well as significant adhesion to their growth surface. The KLK4 clones exhibited significantly greater attachment to Collagen I and IV than native PC-3s and empty vector controls. Over a 12 hour period, in comparison to the control cells, the KLK4 clones displayed an increase in migration towards PC-3 native conditioned media, a 3 fold increase towards conditioned media from an osteoblastic cell line (Saos-2) and no change in migration towards conditioned media from neonatal foreskin fibroblast cells or 20% foetal bovine serum. Furthermore, the increase in migration exhibited by the KLK4 clones was partially blocked by the serine protease inhibitor, aprotinin. The data presented in this thesis suggests that KLK4/hK4 is important in prostate carcinogenesis due to its over-expression in malignant prostate tissues, its regulation by hormones and growth factors associated with prostate disease and the functional consequences of over-expression of KLK4/hK4 in the PC-3 cell line. These results indicate that KLK4/hK4 may play an important role in tumour invasion and bone metastasis via increased attachment to the bone matrix protein, Collagen I, and enhanced migration due to soluble factors produced by osteoblast cells. This suggestion is further supported by the morphological changes displayed by the KLK4 over-expressing cells. Overall, this data suggests that KLK4/hK4 should be further studied to more fully investigate the potential value of KLK4/hK4 as a diagnostic/prognostic biomarker or in therapeutic applications.
Resumo:
Subchondral bone sclerosis is a well-recognised manifestation of osteoarthritis (OA). The osteocyte cell network is now considered to be central to the regulation of bone homeo-stasis; however, it is not known whether the integrity of the osteocyte cell network is altered in OA patients. The aim of this study was to investigate OA osteocyte phenotypic changes and its potential role in OA subchondral bone pathogenesis. The morphological and phenotypic changes of osteocytes in OA samples were investigated by micro-CT, SEM, histology, im-munohistochemistry, TRAP staining, apoptosis assay and real-time PCR studies. We demonstrated that in OA subchondral bone, the osteocyte morphology was altered showing rough and rounded cell body with fewer and disorganized dendrites compared with the os-teocytes in control samples. OA osteocyte also showed dysregulated expression of osteocyte markers, apoptosis, and degradative enzymes, indicating that the phenotypical changes in OA osteocytes were accompanied with OA subchondral bone remodelling (increased osteoblast and osteoclast activity) and increased bone volume with altered mineral content. Significant alteration of osteocytes identified in OA samples indicates a potential regulatory role of osteocytes in subchondral bone remodelling and mineral metabolism during OA pathogene-sis.
Resumo:
The ultimate goal of periodontal tissue engineering is to produce predictable regeneration of alveolar bone, root cementum, and periodontal ligament, which are lost as a result of periodontal diseases. To achieve this goal, it is of great importance to develop novel bioactive materials which could stimulate the proliferation, differentiation and osteogenic/cementogenic gene expression of periodontal ligament cells (PDLCs) for periodontal regeneration. In this study, we synthesized novel Ca7Si2P2O16 ceramic powders for the first time by the sol–gel method and investigated the biological performance of PDLCs after exposure to different concentrations of Ca7Si2P2O16 extracts. The original extracts were prepared at 200 mg ml-1 and further diluted with serum-free cell culture medium to obtain a series of diluted extracts (100, 50, 25, 12.5 and 6.25 mg ml–1). Proliferation, alkaline phosphatase(ALP) activity, Ca deposition, and osteogenesis/cementogenesis-related gene expression (ALP, Col I, Runx2 and CEMP1) were assayed for PDLCs on days 7 and 14. The results showed that the ionic products from Ca7Si2P2O16 powders significantly stimulated the proliferation, ALP activity, Ca deposition and osteogenesis/cementogenesisrelated gene expression of PDLCs. In addition, it was found that Ca7Si2P2O16 powders had excellent apatite-mineralization ability in simulated body fluids. This study demonstrated that Ca7Si2P2O16 powders with such a specific composition possess the ability to stimulate the PDLC proliferation and osteoblast/cemenoblast-like cell differentiation, indicating that they are a promising bioactive material for periodontal tissue regeneration application.
Resumo:
Topographically and chemically modified titanium implants are recognized to have improved osteogenic properties; however, the molecular regulation of this process remains unknown. This study aimed to determine the microRNA profile and the potential regulation of osteogenic differentiation following early exposure of osteoprogenitor cells to sand-blasted, large-grit acid-etched (SLA) and hydrophilic SLA (modSLA) surfaces. Firstly, the osteogenic characteristics of the primary osteoprogenitor cells were confirmed using ALP activity and Alizarin Red S staining. The effect of smooth (SMO), SLA and modSLA surfaces on the TGF-β/BMP (BMP2, BMP6, ACVR1) and non-canonical WNT/Ca2+ (WNT5A, FZD6) pathways, as well as the integrins ITGB1 and ITGA2, was determined. It was revealed that the modified titanium surfaces could induce the activation of TGF-β/BMP and non-canonical WNT/Ca2+ signaling genes. The expression pattern of microRNAs (miRNAs) related to cell differentiation was evaluated. Statistical analysis of the differentially regulated miRNAs indicated that 35 and 32 miRNAs were down-regulated on the modSLA and SLA surfaces respectively, when compared with the smooth surface (SMO). Thirty-one miRNAs that were down-regulated were common to both modSLA and SLA. There were 10 miRNAs up-regulated on modSLA and nine on SLA surfaces, amongst which eight were the same as observed on modSLA. TargetScan predictions for the down-regulated miRNAs revealed genes of the TGF-β/BMP and non-canonical Ca2+ pathways as targets. This study demonstrated that modified titanium implant surfaces induce differential regulation of miRNAs, which potentially regulate the TGF-β/BMP and WNT/Ca2+ pathways during osteogenic differentiation on modified titanium implant surfaces.
Resumo:
In the cancer research field, most in vitro studies still rely on two-dimensional (2D) cultures. However, the trend is rapidly shifting towards using a three-dimensional (3D) culture system. This is because 3D models better recapitulate the microenvironment of cells, and therefore, yield cellular and molecular responses that more accurately describe the pathophysiology of cancer. By adopting technology platforms established by the tissue engineering discipline, it is now possible to grow cancer cells in extracellular matrix (ECM)-like environments and dictate the biophysical and biochemical properties of the matrix. In addition, 3D models can be modified to recapitulate different stages of cancer progression for instance from the initial development of tumor to metastasis. Inevitably, to recapitulate a heterotypic condition, comprising more than one cell type, it requires a more complex 3D model. To date, 3D models that are available for studying the prostate cancer (CaP)-bone interactions are still lacking. Therefore, the aim of this study is to establish a co-culture model that allows investigation of direct and indirect CaP-bone interactions. Prior to that, 3D polyethylene glycol (PEG)-based hydrogel cultures for CaP cells were first developed and growth conditions were optimised. Characterization of the 3D hydrogel cultures show that LNCaP cells form a multicellular mass that resembles avascular tumor. In comparison to 2D cultures, besides the difference in cell morphology, the response of LNCaP cells to the androgen analogue (R1881) stimulation is different compared to the cells in 2D cultures. This discrepancy between 2D and 3D cultures is likely associated with the cell-cell contact, density and ligand-receptor interactions. Following the 3D monoculture study, a 3D direct co-culture model of CaP cells and the human tissue engineered bone (hTEBC) construct was developed. Interactions between the CaP cells and human osteoblasts (hOBs) resulted in elevation of Matrix Metalloproteinase 9 (MMP9) for PC-3 cells and Prostate Specific Antigen (PSA) for LNCaP cells. To further investigate the paracrine interaction of CaP cells and (hOBs), a 3D indirect co-culture model was developed, where LNCaP cells embedded within PEG hydrogels were co-cultured with hTEBC. It was found that the cellular changes observed reflect the early event of CaP colonizing the bone site. In the absence of androgens, interestingly, up-regulation of PSA and other kallikreins is also detected in the co-culture compared to the LNCaP monoculture. This non androgenic stimulation could be triggered by the soluble factors secreted by the hOB such as Interleukin-6. There are also decrease in alkaline phosphatase (ALP) activity and down-regulation of genes of the hOB when co-cultured with LNCaP cells that have not been previously described. These genes include transforming growth factor β1 (TGFβ1), osteocalcin and Vimentin. However, no changes to epithelial markers (e.g E-cadherin, Cytokeratin 8) were observed in both cell types from the co-culture. Some of these intriguing changes observed in the co-cultures that had not been previously described have enriched the basic knowledge of the CaP cell-bone interaction. From this study, we have shown evidence of the feasibility and versatility of our established 3D models. These models can be adapted to test various hypotheses for studies pertaining to underlying mechanisms of bone metastasis and could provide a vehicle for anticancer drug screening purposes in the future.
Resumo:
This study describes the design of a biphasic scaffold composed of a Fused Deposition Modeling scaffold (bone compartment) and an electrospun membrane (periodontal compartment) for periodontal regeneration. In order to achieve simultaneous alveolar bone and periodontal ligament regeneration a cell-based strategy was carried out by combining osteoblast culture in the bone compartment and placement of multiple periodontal ligament (PDL) cell sheets on the electrospun membrane. In vitro data showed that the osteoblasts formed mineralized matrix in the bone compartment after 21 days in culture and that the PDL cell sheet harvesting did not induce significant cell death. The cell-seeded biphasic scaffolds were placed onto a dentin block and implanted for 8 weeks in an athymic rat subcutaneous model. The scaffolds were analyzed by μCT, immunohistochemistry and histology. In the bone compartment, a more intense ALP staining was obtained following seeding with osteoblasts, confirming the μCT results which showed higher mineralization density for these scaffolds. A thin mineralized cementum-like tissue was deposited on the dentin surface for the scaffolds incorporating the multiple PDL cell sheets, as observed by H&E and Azan staining. These scaffolds also demonstrated better attachment onto the dentin surface compared to no attachment when no cell sheets were used. In addition, immunohistochemistry revealed the presence of CEMP1 protein at the interface with the dentine. These results demonstrated that the combination of multiple PDL cell sheets and a biphasic scaffold allows the simultaneous delivery of the cells necessary for in vivo regeneration of alveolar bone, periodontal ligament and cementum. © 2012 Elsevier Ltd.
Resumo:
To achieve the ultimate goal of periodontal tissue engineering, it is of great importance to develop bioactive scaffolds which could stimulate the osteogenic/cementogenic differentiation of periodontal ligament cells (PDLCs) for the favorable regeneration of alveolar bone, root cementum, and periodontal ligament. Strontium (Sr) and Sr-containing biomaterials have been found to induce osteoblast activity. However, there is no systematic report about the interaction between Sr or Sr-containing biomaterials and PDLCs for periodontal tissue engineering. The aims of this study were to prepare Sr-containing mesoporous bioactive glass (Sr-MBG) scaffolds and investigate whether the addition of Sr could stimulate the osteogenic/cementogenic differentiation of PDLCs in tissue engineering scaffold system. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of Sr-MBG scaffolds were characterized. The proliferation, alkaline phosphatase (ALP) activity and osteogenesis/cementogenesis-related gene expression (ALP, Runx2, Col I, OPN and CEMP1) of PDLCs on different kinds of Sr-MBG scaffolds were systematically investigated. The results show that Sr plays an important role in influencing the mesoporous structure of MBG scaffolds in which high contents of Sr decreased the well-ordered mesopores as well as their surface area/pore volume. Sr2+ ions could be released from Sr-MBG scaffolds in a controlled way. The incorporation of Sr into MBG scaffolds has significantly stimulated ALP activity and osteogenesis/cementogenesis-related gene expression of PDLCs. Furthermore, Sr-MBG scaffolds in simulated body fluids environment still maintained excellent apatite-mineralization ability. The study suggests that the incorporation of Sr into MBG scaffolds is a viable way to stimulate the biological response of PDLCs. Sr-MBG scaffolds are a promising bioactive material for periodontal tissue engineering application.
Resumo:
Background The bisphosphonate, zoledronic acid (ZOL), can inhibit osteoclasts leading to decreased osteoclastogenesis and osteoclast activity in bone. Here, we used a mixed osteolytic/osteoblastic murine model of bone-metastatic prostate cancer, RM1(BM), to determine how inhibiting osteolysis with ZOL affects the ability of these cells to establish metastases in bone, the integrity of the tumour-bearing bones and the survival of the tumour-bearing mice. Methods The model involves intracardiac injection for arterial dissemination of the RM1(BM) cells in C57BL/6 mice. ZOL treatment was given via subcutaneous injections on days 0, 4, 8 and 12, at 20 and 100 µg/kg doses. Bone integrity was assessed by micro-computed tomography and histology with comparison to untreated mice. The osteoclast and osteoblast activity was determined by measuring serum tartrate-resistant acid phosphatase 5b (TRAP 5b) and osteocalcin, respectively. Mice were euthanased according to predetermined criteria and survival was assessed using Kaplan Meier plots. Findings Micro-CT and histological analysis showed that treatment of mice with ZOL from the day of intracardiac injection of RM1(BM) cells inhibited tumour-induced bone lysis, maintained bone volume and reduced the calcification of tumour-induced endochondral osteoid material. ZOL treatment also led to a decreased serum osteocalcin and TRAP 5b levels. Additionally, treated mice showed increased survival compared to vehicle treated controls. However, ZOL treatment did not inhibit the cells ability to metastasise to bone as the number of bone-metastases was similar in both treated and untreated mice. Conclusions ZOL treatment provided significant benefits for maintaining the integrity of tumour-bearing bones and increased the survival of tumour bearing mice, though it did not prevent establishment of bone-metastases in this model. From the mechanistic view, these observations confirm that tumour-induced bone lysis is not a requirement for establishment of these bone tumours.
Resumo:
Breast cancer in its advanced stage has a high predilection to the skeleton. Currently, treatment options of breast cancer-related bone metastasis are restricted to only palliative therapeutic modalities. This is due to the fact that mechanisms regarding the breast cancer celI-bone colonisation as well as the interactions of breast cancer cells with the bone microenvironment are not fully understood, yet. This might be explained through a lack of appropriate in vitro and in vivo models that are currently addressing the above mentioned issue. Hence the hypothesis that the translation of a bone tissue engineering platform could lead to improved and more physiological in vitro and in vivo model systems in order to investigate breast cancer related bone colonisation was embraced in this PhD thesis. Therefore the first objective was to develop an in vitro model system that mimics human mineralised bone matrix to the highest possible extent to examine the specific biological question, how the human bone matrix influences breast cancer cell behaviour. Thus, primary human osteoblasts were isolated from human bone and cultured under osteogenic conditions. Upon ammonium hydroxide treatment, a cell-free intact mineralised human bone matrix was left behind. Analyses revealed a similar protein and mineral composition of the decellularised osteoblast matrix to human bone. Seeding of a panel of breast cancer cells onto the bone mimicking matrix as well as reference substrates like standard tissue culture plastic and collagen coated tissue culture plastic revealed substrate specific differences of cellular behaviour. Analyses of attachment, alignment, migration, proliferation, invasion, as well as downstream signalling pathways showed that these cellular properties were influenced through the osteoblast matrix. The second objective of this PhD project was the development of a human ectopic bone model in NOD/SCID mice using medical grade polycaprolactone tricalcium phosphate (mPCL-TCP) scaffold. Human osteoblasts and mesenchymal stem cells were seeded onto an mPCL-TCP scaffold, fabricated using a fused deposition modelling technique. After subcutaneous implantation in conjunction with the bone morphogenetic protein 7, limited bone formation was observed due to the mechanical properties of the applied scaffold and restricted integration into the soft tissue of flank of NOD/SCID mice. Thus, a different scaffold fabrication technique was chosen using the same polymer. Electrospun tubular scaffolds were seeded with human osteoblasts, as they showed previously the highest amount of bone formation and implanted into the flanks of NOD/SCID mice. Ectopic bone formation with sufficient vascularisation could be observed. After implantation of breast cancer cells using a polyethylene glycol hydrogel in close proximity to the newly formed bone, macroscopic communication between the newly formed bone and the tumour could be observed. Taken together, this PhD project showed that bone tissue engineering platforms could be used to develop an in vitro and in vivo model system to study cancer cell colonisation in the bone microenvironment.
Resumo:
The aim of this study is to prepare Ca, P and Si-containing ternary oxide nagelschmidtite (NAGEL, Ca7Si2P2O16) bioceramics and explore their in vitro bioactivity for potential bone tissue regeneration. We prepared dense NAGEL ceramics through high-temperature sintering of NAGEL ceramic powders. The apatite-mineralization ability, dissolution rate, and human osteoblast response (including cytotoxicity analysis, attachment, morphology, proliferation, and bone-related gene expression) to NAGEL ceramics have been systematically studied by comparing with conventional β-tricalcium phosphate (β-TCP) ceramics. The results showed that NAGEL ceramics possessed more obvious apatite mineralization and dissolution (degradation) and stimulated bone-related gene expression (OCN and OPN) of osteoblasts than β-TCP ceramics. NAGEL ceramics also showed no significant cytotoxicity. NAGEL ceramics supported osteoblast attachment, proliferation, and osteogenic gene expression, with a comparable cell proliferation activity with β-TCP ceramics. These results indicate that novel NAGEL bioceramics with the specific composition of Ca7Si2P2O16, are a promising biomaterial for bone tissue regeneration application.