687 resultados para Open-air schools.
Resumo:
Children are particularly susceptible to air pollution and schools are examples of urban microenvironments that can account for a large portion of children’s exposure to airborne particles. Thus this paper aimed to determine the sources of primary airborne particles that children are exposed to at school by analyzing selected organic molecular markers at 11 urban schools in Brisbane, Australia. Positive matrix factorization analysis identified four sources at the schools: vehicle emissions, biomass burning, meat cooking and plant wax emissions accounting for 45%, 29%, 16% and 7%, of the organic carbon respectively. Biomass burning peaked in winter due to prescribed burning of bushland around Brisbane. Overall, the results indicated that both local (traffic) and regional (biomass burning) sources of primary organic aerosols influence the levels of ambient particles that children are exposed at the schools. These results have implications for potential control strategies for mitigating exposure at schools.
Resumo:
Currently, there is a limited understanding of the sources of ambient fine particles that contribute to the exposure of children at urban schools. Since the size and chemical composition of airborne particle are key parameters for determining the source as well as toxicity, PM1 particles (mass concentration of particles with an aerodynamic diameter less than 1 µm) were collected at 24 urban schools in Brisbane, Australia and their elemental composition determined. Based on the elemental composition four main sources were identified; secondary sulphates, biomass burning, vehicle and industrial emissions. The largest contributing source was industrial emissions and this was considered as the main source of trace elements in the PM1 that children were exposed to at school. PM1 concentrations at the schools were compared to the elemental composition of the PM2.5 particles (mass concentration of particles with an aerodynamic diameter less than 2.5 µm) from a previous study conducted at a suburban and roadside site in Brisbane. This comparison revealed that the more toxic heavy metals (V, Cr, Ni, Cu, Zn and Pb), mostly from vehicle and industrial emissions, were predominantly in the PM1 fraction. Thus, the results from this study points to PM1 as a potentially better particle size fraction for investigating the health effects of airborne particles.
Resumo:
For more than 15 years, QUT’s Visual Arts discipline has employed a teaching model known as the ‘open studio’ in their undergraduate BFA program. Distinct from the other models of studio degrees in Australia, the open studio approach emphasizes individual practice by focusing on experimentation, collaboration and cross-disciplinary activities. However, while this activity proves to be highly relevant to exploring and participating in the ‘post medium’ nature of much contemporary art, the open studio also presents a complex of affecting challenges to the artist-teacher. The open studio, it can be argued, produces a different type of student than traditional, discipline-specific art programs – but it also produces a different kind of artist-teacher. In this paper, the authors will provide a reflection on their own experiences as artists and studio lecturers involved with the two ‘bookends’ of the QUT studio program – first year and third year. Using these separate contexts as case studies, the authors will discuss the transformative qualities of the open studio as it is adapted to the particularities of each cohort and the curricular needs of each year level. In particular, the authors will explore the way the teaching experience has influenced and positively challenged their individual (and paradoxically) discipline-focussed, studio practices. It is generally accepted that the teaching of art needs to be continually reconceptualised in response to the changing conditions of contemporary art, culture and technology. This paper will articulate how the authors have worked at that reconceptualisation within both their teaching and studio practices and so practically demonstrate the complex dialogic processes inherent to the teaching of the visual arts studio.
Resumo:
This exploratory study seeks to further our understanding of Work-Integrated Learning (WIL) programs in the Accountancy schools of Australian universities. It emphasises the significance of the role of the university in monitoring and administrating these programs. The study uses a qualitative method with mainly open-ended questions via an online questionnaire. The responses from senior accounting academic decision-makers identified the major forms of WIL used and the most challenging issues. WIL is perceived to be an important program that should be included in degree courses, and strong efforts should be made to overcome the challenges involved in conducting such a program.
Resumo:
There are three distinct categories of air environment to be considered in this chapter. These are as follows: (1) The “ambient” or general outdoors atmosphere to which the members of the population are exposed when they venture out of their homes or offices in industrial, urban or rural environments. (2) Indoor air environments, which occur in buildings such as homes, schools, restaurants, public hospitals and office buildings. This category does not cover factories or workplaces which are otherwise subjected to the provisions of various occupational health standards. (3) Workplace atmospheres, which occur in a variety of industries or factories and for which there are numerous atmospheric concentration limits (or exposure standards) promulgated by appropriate bodies or organisations. Since 2009 setting concentration limits for atmospheric contaminants has been administered by Safe Work Australia. A fourth category of air environment which falls outside this chapter is that which is related to upper atmospheric research, global atmospheric effects and concomitant areas of inquiry and/or debate. Such areas include “greenhouse” gas emissions, ozone depletion, and related matters of atmospheric chemistry and physics. This category is not referred to again in this chapter.
Resumo:
There is an increased concern about airborne particles not only because of their environmental effects, but also due to their potential adverse health effects on humans, especially children. Despite the growing evidence of airborne particles having an impact on children’s health, there have been limited studies investigating the long term health effects as well as the chemical composition of ambient air which further helps in determining their toxicity. Therefore, a systematic study on the chemical composition of air in school environment has been carried out in Brisbane, which is known as “Ultrafine Particles from Traffic Emissions on Children’s Health” (UPTECH). This study is also a part of the larger project focusing on analysis of the chemical composition of ambient air, as well as source apportionment and the quantification of ambient concentrations of organic pollutants in the vicinity of schools. However, this particular paper presents some of the results on concentration of different Volatile Organic Compounds in both indoor and outdoor location from different schools. The database consisted of 750 samples (500 outdoor and 250 indoor) collected for VOCs at 25 different schools. The sampling and analysis were conducted following the standard methods. A total of 90 individual VOCs were identified from the schools studied. Compounds such as toluene, acetic acid, nonanal, benzaldehyde, 2- ethyl 1- hexanol, limonene were the most common in indoors whereas isopentane, toluene, hexane, heptane were dominant in outdoors. The indoor/ outdoor ratio of average sum of VOCs were found to be more than one in most of the schools indicating that there might be additional indoor sources along with the outdoor air in those schools. However, further expansion of the study in relation to source apportionment, correlating with traffic and meteorological data is in progress.
Resumo:
Long term exposure to organic pollutants, both inside and outside school buildings may affect children’s health and influence their learning performance. Since children spend significant amount of time in school, air quality, especially in classrooms plays a key role in determining the health risks associated with exposure at schools. Within this context, the present study investigated the ambient concentrations of Volatile Organic Compounds (VOCs) in 25 primary schools in Brisbane with the aim to quantify the indoor and outdoor VOCs concentrations, identify VOCs sources and their contribution, and based on these; propose mitigation measures to reduce VOCs exposure in schools. One of the most important findings is the occurrence of indoor sources, indicated by the I/O ratio >1 in 19 schools. Principal Component Analysis with Varimax rotation was used to identify common sources of VOCs and source contribution was calculated using an Absolute Principal Component Scores technique. The result showed that outdoor 47% of VOCs were contributed by petrol vehicle exhaust but the overall cleaning products had the highest contribution of 41% indoors followed by air fresheners and art and craft activities. These findings point to the need for a range of basic precautions during the selection, use and storage of cleaning products and materials to reduce the risk from these sources.
Resumo:
Blasting is an integral part of large-scale open cut mining that often occurs in close proximity to population centers and often results in the emission of particulate material and gases potentially hazardous to health. Current air quality monitoring methods rely on limited numbers of fixed sampling locations to validate a complex fluid environment and collect sufficient data to confirm model effectiveness. This paper describes the development of a methodology to address the need of a more precise approach that is capable of characterizing blasting plumes in near-real time. The integration of the system required the modification and integration of an opto-electrical dust sensor, SHARP GP2Y10, into a small fixed-wing and multi-rotor copter, resulting in the collection of data streamed during flight. The paper also describes the calibration of the optical sensor with an industry grade dust-monitoring device, Dusttrak 8520, demonstrating a high correlation between them, with correlation coefficients (R2) greater than 0.9. The laboratory and field tests demonstrate the feasibility of coupling the sensor with the UAVs. However, further work must be done in the areas of sensor selection and calibration as well as flight planning.
Resumo:
This workshop comprised a diverse group of African construction experts, ranging far wider than RSA. Each of the attendees had attended the annual ASOCSA conference and was additionally provided with a short workshop pre-brief. The aim was to develop a view of their 15-20 year vision of construction improvement in RSA and the steps necessary to get there. These included sociological, structural, technical and process changes. Whilst some suggestions are significantly challenging, none are impossible, given sufficient collaboration between government, industry, academia and NGOs. The highest priority projects (more properly, programmes) were identified and further explored. These are: 1. Information Hub (‘Open Africa’). Aim – to utilise emerging trends in Open Data to provide a force for African unity. 2. Workforce Development. Aim – to rebuild a competent, skilled construction industry for RSA projects and for export. 3. Modular DIY Building. Aim – to accelerate the development of sustainable, cost-efficient and desirable housing for African economic immigrants and others living in makeshift and slum dwellings. Open Data is a maturing theme in different cities and governments around the world and the workshop attendees were very keen to seize such a possibility to assist in developing an environment where Africans can share information and foster collaboration. It is likely that NGOs might be keen to follow up such an initiative. There are significant developments taking place around the world in the construction sector currently, with comparatively large savings being made for taxpayers (20% plus in the UK). Not all of these changes would be easy to transplant to RSA (even more so to much of the rest of Africa). Workforce development was a keen plea amongst the attendees, who seemed concerned that expertise has leaked away and is not being replaced with sufficient intensity. It is possible today to develop modular buildings in such a way that even unskilled residents can assist in their construction, and even their appropriate design. These buildings can be sited nearly autonomously from infrastructures, thus relieving the tensions on cities and townships, whilst providing humane accommodation for the economically disadvantaged. Development of suitable solutions could either be conducted with other similarly stressed countries or developed in-country and the expertise exported. Finally, it should be pointed out that this was very much a first step. Any opportunity to collaborate from an Australian, QUT or CIB perspective would be welcomed, whilst acknowledging that the leading roles belong to RSA, CSIR, NRF, ASOCSA and the University of KwaZulu-Natal.
Resumo:
Background Exposure to air pollutants, including diesel particulate matter, has been linked to adverse respiratory health effects. Inhaled diesel particulate matter contains adsorbed organic compounds. It is not clear whether the adsorbed organics or the residual components are more deleterious to airway cells. Using a physiologically relevant model, we investigated the role of diesel organic content on mediating cellular responses of primary human bronchial epithelial cells (HBECs) cultured at an air-liquid interface (ALI). Methods Primary HBECs were cultured and differentiated at ALI for at least 28 days. To determine which component is most harmful, we compared primary HBEC responses elicited by residual (with organics removed) diesel emissions (DE) to those elicited by neat (unmodified) DE for 30 and 60 minutes at ALI, with cigarette smoke condensate (CSC) as the positive control, and filtered air as negative control. Cell viability (WST-1 cell proliferation assay), inflammation (TNF-α, IL-6 and IL-8 ELISA) and changes in gene expression (qRT-PCR for HO-1, CYP1A1, TNF-α and IL-8 mRNA) were measured. Results Immunofluorescence and cytological staining confirmed the mucociliary phenotype of primary HBECs differentiated at ALI. Neat DE caused a comparable reduction in cell viability at 30 or 60 min exposures, whereas residual DE caused a greater reduction at 60 min. When corrected for cell viability, cytokine protein secretion for TNF-α, IL-6 and IL-8 were maximal with residual DE at 60 min. mRNA expression for HO-1, CYP1A1, TNF-α and IL-8 was not significantly different between exposures. Conclusion This study provides new insights into epithelial cell responses to diesel emissions using a physiologically relevant aerosol exposure model. Both the organic content and residual components of diesel emissions play an important role in determining bronchial epithelial cell response in vitro. Future studies should be directed at testing potentially useful interventions against the adverse health effects of air pollution exposure.
Resumo:
Airborne organic pollutants have significant impacts on health; however their sources, atmospheric characteristics and resulting human exposures are poorly understood. This research characterized chemical composition of atmospheric volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyls in representative number of primary schools in Brisbane Metropolitan Area, quantified their concentrations, assessed their toxicity and apportioned them to their sources. The findings expand scientific knowledge of these pollutants, and will contribute towards science based management of risks associated with pollution emissions and air quality in schools and other urban and indoor environments.
Resumo:
- Objective We sought to assess the effect of long-term exposure to ambient air pollution on the prevalence of self-reported health outcomes in Australian women. - Design Cross-sectional study - Setting and participants The geocoded residential addresses of 26 991 women across 3 age cohorts in the Australian Longitudinal Study on Women's Health between 2006 and 2011 were linked to nitrogen dioxide (NO2) exposure estimates from a land-use regression model. Annual average NO2 concentrations and residential proximity to roads were used as proxies of exposure to ambient air pollution. - Outcome measures Self-reported disease presence for diabetes mellitus, heart disease, hypertension, stroke, asthma, chronic obstructive pulmonary disease and self-reported symptoms of allergies, breathing difficulties, chest pain and palpitations. - Methods Disease prevalence was modelled by population-averaged Poisson regression models estimated by generalised estimating equations. Associations between symptoms and ambient air pollution were modelled by multilevel mixed logistic regression. Spatial clustering was accounted for at the postcode level. - Results No associations were observed between any of the outcome and exposure variables considered at the 1% significance level after adjusting for known risk factors and confounders. - Conclusions Long-term exposure to ambient air pollution was not associated with self-reported disease prevalence in Australian women. The observed results may have been due to exposure and outcome misclassification, lack of power to detect weak associations or an actual absence of associations with self-reported outcomes at the relatively low annual average air pollution exposure levels across Australia.
Resumo:
In school environments, children are constantly exposed to mixtures of airborne substances, derived from a variety of sources, both in the classroom and in the school surroundings. It is important to evaluate the hazardous properties of these mixtures, in order to conduct risk assessments of their impact on chil¬dren’s health. Within this context, through the application of a Maximum Cumulative Ratio approach, this study aimed to explore whether health risks due to indoor air mixtures are driven by a single substance or are due to cumulative exposure to various substances. This methodology requires knowledge of the concentration of substances in the air mixture, together with a health related weighting factor (i.e. reference concentration or lowest concentration of interest), which is necessary to calculate the Hazard Index. Maximum cumulative ratio and Hazard Index values were then used to categorise the mixtures into four groups, based on their hazard potential and therefore, appropriate risk management strategies. Air samples were collected from classrooms in 25 primary schools in Brisbane, Australia. Analysis was conducted based on the measured concentration of these substances in about 300 air samples. The results showed that in 92% of the schools, indoor air mixtures belonged to the ‘low concern’ group and therefore, they did not require any further assessment. In the remaining schools, toxicity was mainly governed by a single substance, with a very small number of schools having a multiple substance mix which required a combined risk assessment. The proposed approach enables the identification of such schools and thus, aides in the efficient health risk management of pollution emissions and air quality in the school environment.