65 resultados para Oligomeric assembly
Resumo:
The striped catfish (Pangasianodon hypophthalmus) culture industry in the Mekong Delta in Vietnam has developed rapidly over the past decade. The culture industry now however, faces some significant challenges, especially related to climate change impacts notably from predicted extensive saltwater intrusion into many low topographical coastal provinces across the Mekong Delta. This problem highlights a need for development of culture stocks that can tolerate more saline culture environments as a response to expansion of saline water-intruded land. While a traditional artificial selection program can potentially address this need, understanding the genomic basis of salinity tolerance can assist development of more productive culture lines. The current study applied a transcriptomic approach using Ion PGM technology to generate expressed sequence tag (EST) resources from the intestine and swim bladder from striped catfish reared at a salinity level of 9 ppt which showed best growth performance. Total sequence data generated was 467.8 Mbp, consisting of 4,116,424 reads with an average length of 112 bp. De novo assembly was employed that generated 51,188 contigs, and allowed identification of 16,116 putative genes based on the GenBank non-redundant database. GO annotation, KEGG pathway mapping, and functional annotation of the EST sequences recovered with a wide diversity of biological functions and processes. In addition, more than 11,600 simple sequence repeats were also detected. This is the first comprehensive analysis of a striped catfish transcriptome, and provides a valuable genomic resource for future selective breeding programs and functional or evolutionary studies of genes that influence salinity tolerance in this important culture species.
Resumo:
The morphology of plasmonic nano-assemblies has a direct influence on optical properties, such as localised surface plasmon resonance (LSPR) and surface enhanced Raman scattering (SERS) intensity. Assemblies with core-satellite morphologies are of particular interest, because this morphology has a high density of hot-spots, while constraining the overall size. Herein, a simple method is reported for the self-assembly of gold NPs nano-assemblies with a core-satellite morphology, which was mediated by hyperbranched polymer (HBP) linkers. The HBP linkers have repeat units that do not interact strongly with gold NPs, but have multiple end-groups that specifically interact with the gold NPs and act as anchoring points resulting in nano-assemblies with a large (~48 nm) core surrounded by smaller (~15 nm) satellites. It was possible to control the number of satellites in an assembly which allowed optical parameters such as SPR maxima and the SERS intensity to be tuned. These results were found to be consistent with finite-difference time domain (FDTD) simulations. Furthermore, the multiplexing of the nano-assemblies with a series of Raman tag molecules was demonstrated, without an observable signal arising from the HBP linker after tagging. Such plasmonic nano-assemblies could potentially serve as efficient SERS based diagnostics or biomedical imaging agents in nanomedicine.
Resumo:
The development, operation, and applications of two configurations of an integrated plasma-aided nanofabrication facility (IPANF) comprising low-frequency inductively coupled plasma-assisted, low-pressure, multiple-target RF magnetron sputtering plasma source, are reported. The two configurations of the plasma source have different arrangements of the RF inductive coil: a conventional external flat spiral "pancake" coil and an in-house developed internal antenna comprising two orthogonal RF current sheets. The internal antenna configuration generates a "unidirectional" RF current that deeply penetrates into the plasma bulk and results in an excellent uniformity of the plasma over large areas and volumes. The IPANF has been employed for various applications, including low-temperature plasma-enhanced chemical vapor deposition of vertically aligned single-crystalline carbon nanotips, growth of ultra-high aspect ratio semiconductor nanowires, assembly of optoelectronically important Si, SiC, and Al1-xInxN quantum dots, and plasma-based synthesis of bioactive hydroxyapatite for orthopedic implants.
Resumo:
Semiconductor III-V quantum dots (QDs) are particularly enticing components for the integration of optically promising III-V materials with the silicon technology prevalent in the microelectronics industry. However, defects due to deviations from a stoichiometric composition [group III: group V = 1] may lead to impaired device performance. This paper investigates the initial stages of formation of InSb and GaAs QDs on Si(1 0 0) through hybrid numerical simulations. Three situations are considered: a neutral gas environment (NG), and two ionized gas environments, namely a localized ion source (LIS) and a background plasma (BP) case. It is shown that when the growth is conducted in an ionized gas environment, a stoichiometric composition may be obtained earlier in the QD as compared to a NG. Moreover, the stoichiometrization time, tst, is shorter for the BP case compared to the LIS scenario. A discussion of the effect of ion/plasma-based tools as well as a range of process conditions on the final island size distribution is also included. Our results suggest a way to obtain a deterministic level of control over nanostructure properties (in particular, elemental composition and size) during the initial stages of growth which is a crucial step towards achieving highly tailored QDs suitable for implementation in advanced technological devices.
Resumo:
The possibility of deterministic plasma-assisted reshaping of capped cylindrical seed nanotips by manipulating the plasma parameter-dependent sheath width is shown. Multiscale hybrid gas phase/solid surface numerical experiments reveal that under the wide-sheath conditions the nanotips widen at the base and when the sheath is narrow, they sharpen up. By combining the wide- and narrow-sheath stages in a single process, it turns out possible to synthesize wide-base nanotips with long- and narrow-apex spikes, ideal for electron microemitter applications. This plasma-based approach is generic and can be applied to a larger number of multipurpose nanoassemblies. © 2005 American Institute of Physics.
Resumo:
This work presents the details of the numerical model used in simulation of self-organization of nano-islands on solid surfaces in plasma-assisted assembly of quantum dot structures. The model includes the near-substrate non-neutral layer (plasma sheath) and a nanostructured solid deposition surface and accounts for the incoming flux of and energy of ions from the plasma, surface temperature-controlled adatom migration about the surface, adatom collisions with other adatoms and nano-islands, adatom inflow to the growing nano-islands from the plasma and from the two-dimensional vapour on the surface, and particle evaporation to the ambient space and the two-dimensional vapour. The differences in surface concentrations of adatoms in different areas within the quantum dot pattern significantly affect the self-organization of the nano-islands. The model allows one to formulate the conditions when certain islands grow, and certain ones shrink or even dissolve and relate them to the process control parameters. Surface coverage by selforganized quantum dots obtained from numerical simulation appears to be in reasonable agreement with the available experimental results.
Resumo:
High-density inductively coupled plasma (ICP)-assisted self-assembly of the ordered arrays of various carbon nanostructures (NS) for the electron field emission applications is reported. Carbon-based nano-particles, nanotips, and pyramid-like structures, with the controllable shape, ordering, and areal density are grown under remarkably low process temperatures (260-350 °C) and pressures (below 0.1 Torr), on the same Ni-based catalyst layers, in a DC bias-controlled floating temperature regime. A high degree of positional and directional ordering, elevated sp2 content, and a well-structured graphitic morphology are achieved without the use of pre-patterned or externally heated substrates.
Resumo:
Self-assembly of carbon nanotip (CNTP) structures on Ni-based catalyst in chemically active inductively coupled plasmas of CH 4 + H 2 + Ar gas mixtures is reported. By varying the process conditions, it appears possible to control the shape, size, and density of CNTPs, content of the nanocrystalline phase in the films, as well as to achieve excellent crystallinity, graphitization, uniformity and vertical alignment of the resulting nanostructures at substrate temperatures 300-500°C and low gas pressures (below 13.2 Pa). This study provides a simple and efficient plasma-enhanced chemical vapor deposition (PECVD) technique for the fabrication of vertically aligned CNTP arrays for electron field emitters.
Resumo:
The increasing interest in nanoscience and nanotechnology has prompted intense investigations into appropriate fabrication techniques. Self-organized, bottom-up growth of nanomaterials using plasma nanofabrication techniques1–10 has proven to be one of the most promising approaches for the construction of precisely tailored nanostructures (i.e., quantum dots,11–13 nanotubes,14–17 nanowires,18–20 etc.) arrays. Thus the primary aim of this chapter is to show how plasmas may be used to achieve a high level of control during the self-organized growth of a range of nanomaterials, from zero-dimensional quantum dots (Section 15.2) to one- and two-dimensional nanomaterials (Section 15.3) to nanostructured films (Section 15.4)...
Resumo:
The major structural components of HIV are synthesized as a 55-kDa polyprotein, Gag. Particle formation is driven by the self-assembly of Gag into a curved hexameric lattice, the structure of which is poorly understood. We used cryoelectron tomography and contrast-transfer-function corrected subtomogram averaging to study the structure of the assembled immature Gag lattice to approximate to 17-angstrom resolution. Gag is arranged in the immature virus as a single, continuous, but incomplete hexameric lattice whose curvature is mediated without a requirement for pentameric defects. The resolution of the structure allows positioning of individual protein domains. High-resolution crystal structures were fitted into the reconstruction to locate protein-protein interfaces involved in Gag assembly, and to identify the structural transformations associated with virus maturation. The results of this study suggest a concept for the formation of nonsymmetrical enveloped viruses of variable sizes.
Resumo:
Background The sequencing, de novo assembly and annotation of transcriptome datasets generated with next generation sequencing (NGS) has enabled biologists to answer genomic questions in non-model species with unprecedented ease. Reliable and accurate de novo assembly and annotation of transcriptomes, however, is a critically important step for transcriptome assemblies generated from short read sequences. Typical benchmarks for assembly and annotation reliability have been performed with model species. To address the reliability and accuracy of de novo transcriptome assembly in non-model species, we generated an RNAseq dataset for an intertidal gastropod mollusc species, Nerita melanotragus, and compared the assembly produced by four different de novo transcriptome assemblers; Velvet, Oases, Geneious and Trinity, for a number of quality metrics and redundancy. Results Transcriptome sequencing on the Ion Torrent PGM™ produced 1,883,624 raw reads with a mean length of 133 base pairs (bp). Both the Trinity and Oases de novo assemblers produced the best assemblies based on all quality metrics including fewer contigs, increased N50 and average contig length and contigs of greater length. Overall the BLAST and annotation success of our assemblies was not high with only 15-19% of contigs assigned a putative function. Conclusions We believe that any improvement in annotation success of gastropod species will require more gastropod genome sequences, but in particular an increase in mollusc protein sequences in public databases. Overall, this paper demonstrates that reliable and accurate de novo transcriptome assemblies can be generated from short read sequencers with the right assembly algorithms. Keywords: Nerita melanotragus; De novo assembly; Transcriptome; Heat shock protein; Ion torrent
Resumo:
The proper function of the spindle is crucial to the high fidelity of chromosome segregation and is indispensable for tumor suppression in humans. Centrobin is a recently identified centrosomal protein that has a role in stabilizing the microtubule structure. Here we functionally characterize the defects in centrosome integrity and spindle assembly in Centrobin-depleted cells. Centrobin-depleted cells show a range of spindle abnormalities including unfocused poles that are not associated with centrosomes, S-shaped spindles and mini spindles. These cells undergo mitotic arrest and subsequently often die by apoptosis, as determined by live cell imaging. Co-depletion of Mad2 relieves the mitotic arrest, indicating that cells arrest due to a failure to silence the spindle checkpoint in metaphase. Consistent with this, Centrobin-depleted metaphase cells stained positive for BubR1 and BubR1 S676. Staining with a panel of centrosome markers showed a loss of centrosome anchoring to the mitotic spindle. Furthermore, these cells show less cold-stable microtubules and a shorter distance between kinetochore pairs. These results show a requirement of Centrobin in maintaining centrosome integrity, which in turn promotes anchoring of mitotic spindle to the centrosomes. Furthermore, this anchoring is required for the stability of microtubule–kinetochore attachments and biogenesis of tension-ridden and properly functioning mitotic spindle.
Resumo:
1,4-Diazabicyclo[2.2.2]octane (DABCO) forms well-defined co-crystals with 1,2-diiodotetrafluorobenzene (1,2-DITFB), [(1,2-DITFB)2DABCO], and 1,3,5-triiodotrifluorobenzene, [(1,3,5-TITFB)2DABCO]. Both systems exhibited lower-than-expected supramolecular connectivity, which inspired a search for polymorphs in alternative crystallization solvents. In dichloromethane solution, the Menshutkin reaction was found to occur, generating chloride anions and quaternary ammonium cations through the reaction between the solvent and DABCO. The controlled in situ production of chloride ions facilitated the crystallization of new halogen bonded networks, DABCO–CH2Cl[(1,2-DITFB)Cl] (zigzag X-bonded chains) and (DABCO–CH2Cl)3[(1,3,5-TITFB)2Cl3]·CHCl3 (2D pseudo-trigonal X-bonded nets displaying Borremean entanglement), propagating with charge-assisted C–I···Cl– halogen bonds. The method was found to be versatile, and substitution of DABCO with triethylamine (TEA) gave (TEA-CH2Cl)3[(1,2-DITFB)Cl3]·4(H2O) (mixed halogen bond hydrogen bond network with 2D supramolecular connectivity) and TEA-CH2Cl[(1,3,5-TITFB)Cl] (tightly packed planar trigonal nets). The co-crystals were typically produced in high yield and purity with relatively predictable supramolecular topology, particularly with respect to the connectivity of the iodobenzene molecules. The potential to use this synthetic methodology for crystal engineering of halogen bonded architectures is demonstrated and discussed.
Resumo:
Spontaneous adsorption of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) on glassy carbon (GC) electrode leads to the formation of a stable self-assembled monolayer (SAM). Since the SAM of 4α-CoIITAPc is redox active, its adsorption on GC electrode was followed by cyclic voltammetry. SAM of 4α-CoIITAPc on GC electrode shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2. The surface coverage (Γ) value, calculated by integrating the charge under CoII oxidation, was used to study the adsorption thermodynamics and kinetics of 4α-CoIITAPc on GC surface. Cyclic voltammetric studies show that the adsorption of 4α-CoIITAPc on GC electrode has reached the saturation coverage (Γs) within 3 h. The Γs value for the SAM of 4α-CoIITAPc on GC electrode was found to be 2.37 × 10−10 mol cm−2. Gibbs free energy (ΔGads) and adsorption rate constant (kad) for the adsorption of 4α-CoIITAPc on GC surface were found to be −16.76 kJ mol−1 and 7.1 M−1 s−1, respectively. The possible mechanism for the self-assembly of 4α-CoIITAPc on GC surface is through the addition of nucleophilic amines to the olefinic bond on the GC surface in addition to a meager contribution from π stacking. The contribution of π stacking was confirmed from the adsorption of unsubstituted phthalocyanatocobalt(II) (CoPc) on GC electrode. Raman spectra for the SAM of 4α-CoIITAPc on carbon surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Raman and CV studies suggest that 4α-CoIITAPc is adopting nearly a flat orientation or little bit tilted orientation.