106 resultados para Nutrient extraction
Resumo:
The use of appropriate features to characterise an output class or object is critical for all classification problems. In order to find optimal feature descriptors for vegetation species classification in a power line corridor monitoring application, this article evaluates the capability of several spectral and texture features. A new idea of spectral–texture feature descriptor is proposed by incorporating spectral vegetation indices in statistical moment features. The proposed method is evaluated against several classic texture feature descriptors. Object-based classification method is used and a support vector machine is employed as the benchmark classifier. Individual tree crowns are first detected and segmented from aerial images and different feature vectors are extracted to represent each tree crown. The experimental results showed that the proposed spectral moment features outperform or can at least compare with the state-of-the-art texture descriptors in terms of classification accuracy. A comprehensive quantitative evaluation using receiver operating characteristic space analysis further demonstrates the strength of the proposed feature descriptors.
Resumo:
Robust, affine covariant, feature extractors provide a means to extract correspondences between images captured by widely separated cameras. Advances in wide baseline correspondence extraction require looking beyond the robust feature extraction and matching approach. This study examines new techniques of extracting correspondences that take advantage of information contained in affine feature matches. Methods of improving the accuracy of a set of putative matches, eliminating incorrect matches and extracting large numbers of additional correspondences are explored. It is assumed that knowledge of the camera geometry is not available and not immediately recoverable. The new techniques are evaluated by means of an epipolar geometry estimation task. It is shown that these methods enable the computation of camera geometry in many cases where existing feature extractors cannot produce sufficient numbers of accurate correspondences.
Resumo:
Most web service discovery systems use keyword-based search algorithms and, although partially successful, sometimes fail to satisfy some users information needs. This has given rise to several semantics-based approaches that look to go beyond simple attribute matching and try to capture the semantics of services. However, the results reported in the literature vary and in many cases are worse than the results obtained by keyword-based systems. We believe the accuracy of the mechanisms used to extract tokens from the non-natural language sections of WSDL files directly affects the performance of these techniques, because some of them can be more sensitive to noise. In this paper three existing tokenization algorithms are evaluated and a new algorithm that outperforms all the algorithms found in the literature is introduced.
An approach to statistical lip modelling for speaker identification via chromatic feature extraction
Resumo:
This paper presents a novel technique for the tracking of moving lips for the purpose of speaker identification. In our system, a model of the lip contour is formed directly from chromatic information in the lip region. Iterative refinement of contour point estimates is not required. Colour features are extracted from the lips via concatenated profiles taken around the lip contour. Reduction of order in lip features is obtained via principal component analysis (PCA) followed by linear discriminant analysis (LDA). Statistical speaker models are built from the lip features based on the Gaussian mixture model (GMM). Identification experiments performed on the M2VTS1 database, show encouraging results
Resumo:
An automatic approach to road lane marking extraction from high-resolution aerial images is proposed, which can automatically detect the road surfaces in rural areas based on hierarchical image analysis. The procedure is facilitated by the road centrelines obtained from low-resolution images. The lane markings are further extracted on the generated road surfaces with 2D Gabor filters. The proposed method is applied on the aerial images of the Bruce Highway around Gympie, Queensland. Evaluation of the generated road surfaces and lane markings using four representative test fields has validated the proposed method.
Resumo:
Rule extraction from neural network algorithms have been investigated for two decades and there have been significant applications. Despite this level of success, rule extraction from neural network methods are generally not part of data mining tools, and a significant commercial breakthrough may still be some time away. This paper briefly reviews the state-of-the-art and points to some of the obstacles, namely a lack of evaluation techniques in experiments and larger benchmark data sets. A significant new development is the view that rule extraction from neural networks is an interactive process which actively involves the user. This leads to the application of assessment and evaluation techniques from information retrieval which may lead to a range of new methods.
Resumo:
Feature extraction and selection are critical processes in developing facial expression recognition (FER) systems. While many algorithms have been proposed for these processes, direct comparison between texture, geometry and their fusion, as well as between multiple selection algorithms has not been found for spontaneous FER. This paper addresses this issue by proposing a unified framework for a comparative study on the widely used texture (LBP, Gabor and SIFT) and geometric (FAP) features, using Adaboost, mRMR and SVM feature selection algorithms. Our experiments on the Feedtum and NVIE databases demonstrate the benefits of fusing geometric and texture features, where SIFT+FAP shows the best performance, while mRMR outperforms Adaboost and SVM. In terms of computational time, LBP and Gabor perform better than SIFT. The optimal combination of SIFT+FAP+mRMR also exhibits a state-of-the-art performance.
Resumo:
An enhanced mill extraction model has been developed to calculate mill performance parameters and to predict the extraction performance of a milling unit. The model takes into account the fibre suspended in juice streams and calculates filling ratio, reabsorption factor, imbibition coefficient, and separation efficiency using more complete definitions than those used in previous extraction models. A mass balance model is used to determine the fibre, brix and moisture mass flows between milling units so that a complete milling train, including the return stream from the juice screen, is modelled. Model solutions are presented to determine the effect of different levels of fibre in juice and efficiency of fibre separation in the juice screen on brix extraction. The model provides more accurate results than earlier models leading to better understanding and improvement of the milling process.
Resumo:
Nutrition interventions in the form of both self-management education and individualised diet therapy are considered essential for the long-term management of type 2 diabetes mellitus (T2DM). The measurement of diet is essential to inform, support and evaluate nutrition interventions in the management of T2DM. Barriers inherent within health care settings and systems limit ongoing access to personnel and resources, while traditional prospective methods of assessing diet are burdensome for the individual and often result in changes in typical intake to facilitate recording. This thesis investigated the inclusion of information and communication technologies (ICT) to overcome limitations to current approaches in the nutritional management of T2DM, in particular the development, trial and evaluation of the Nutricam dietary assessment method (NuDAM) consisting of a mobile phone photo/voice application to assess nutrient intake in a free-living environment with older adults with T2DM. Study 1: Effectiveness of an automated telephone system in promoting change in dietary intake among adults with T2DM The effectiveness of an automated telephone system, Telephone-Linked Care (TLC) Diabetes, designed to deliver self-management education was evaluated in terms of promoting dietary change in adults with T2DM and sub-optimal glycaemic control. In this secondary data analysis independent of the larger randomised controlled trial, complete data was available for 95 adults (59 male; mean age(±SD)=56.8±8.1 years; mean(±SD)BMI=34.2±7.0kg/m2). The treatment effect showed a reduction in total fat of 1.4% and saturated fat of 0.9% energy intake, body weight of 0.7 kg and waist circumference of 2.0 cm. In addition, a significant increase in the nutrition self-efficacy score of 1.3 (p<0.05) was observed in the TLC group compared to the control group. The modest trends observed in this study indicate that the TLC Diabetes system does support the adoption of positive nutrition behaviours as a result of diabetes self-management education, however caution must be applied in the interpretation of results due to the inherent limitations of the dietary assessment method used. The decision to use a close-list FFQ with known bias may have influenced the accuracy of reporting dietary intake in this instance. This study provided an example of the methodological challenges experienced with measuring changes in absolute diet using a FFQ, and reaffirmed the need for novel prospective assessment methods capable of capturing natural variance in usual intakes. Study 2: The development and trial of NuDAM recording protocol The feasibility of the Nutricam mobile phone photo/voice dietary record was evaluated in 10 adults with T2DM (6 Male; age=64.7±3.8 years; BMI=33.9±7.0 kg/m2). Intake was recorded over a 3-day period using both Nutricam and a written estimated food record (EFR). Compared to the EFR, the Nutricam device was found to be acceptable among subjects, however, energy intake was under-recorded using Nutricam (-0.6±0.8 MJ/day; p<0.05). Beverages and snacks were the items most frequently not recorded using Nutricam; however forgotten meals contributed to the greatest difference in energy intake between records. In addition, the quality of dietary data recorded using Nutricam was unacceptable for just under one-third of entries. It was concluded that an additional mechanism was necessary to complement dietary information collected via Nutricam. Modifications to the method were made to allow for clarification of Nutricam entries and probing forgotten foods during a brief phone call to the subject the following morning. The revised recording protocol was evaluated in Study 4. Study 3: The development and trial of the NuDAM analysis protocol Part A explored the effect of the type of portion size estimation aid (PSEA) on the error associated with quantifying four portions of 15 single foods items contained in photographs. Seventeen dietetic students (1 male; age=24.7±9.1 years; BMI=21.1±1.9 kg/m2) estimated all food portions on two occasions: without aids and with aids (food models or reference food photographs). Overall, the use of a PSEA significantly reduced mean (±SD) group error between estimates compared to no aid (-2.5±11.5% vs. 19.0±28.8%; p<0.05). The type of PSEA (i.e. food models vs. reference food photograph) did not have a notable effect on the group estimation error (-6.7±14.9% vs. 1.4±5.9%, respectively; p=0.321). This exploratory study provided evidence that the use of aids in general, rather than the type, was more effective in reducing estimation error. Findings guided the development of the Dietary Estimation and Assessment Tool (DEAT) for use in the analysis of the Nutricam dietary record. Part B evaluated the effect of the DEAT on the error associated with the quantification of two 3-day Nutricam dietary records in a sample of 29 dietetic students (2 males; age=23.3±5.1 years; BMI=20.6±1.9 kg/m2). Subjects were randomised into two groups: Group A and Group B. For Record 1, the use of the DEAT (Group A) resulted in a smaller error compared to estimations made without the tool (Group B) (17.7±15.8%/day vs. 34.0±22.6%/day, p=0.331; respectively). In comparison, all subjects used the DEAT to estimate Record 2, with resultant error similar between Group A and B (21.2±19.2%/day vs. 25.8±13.6%/day; p=0.377 respectively). In general, the moderate estimation error associated with quantifying food items did not translate into clinically significant differences in the nutrient profile of the Nutricam dietary records, only amorphous foods were notably over-estimated in energy content without the use of the DEAT (57kJ/day vs. 274kJ/day; p<0.001). A large proportion (89.6%) of the group found the DEAT helpful when quantifying food items contained in the Nutricam dietary records. The use of the DEAT reduced quantification error, minimising any potential effect on the estimation of energy and macronutrient intake. Study 4: Evaluation of the NuDAM The accuracy and inter-rater reliability of the NuDAM to assess energy and macronutrient intake was evaluated in a sample of 10 adults (6 males; age=61.2±6.9 years; BMI=31.0±4.5 kg/m2). Intake recorded using both the NuDAM and a weighed food record (WFR) was coded by three dietitians and compared with an objective measure of total energy expenditure (TEE) obtained using the doubly labelled water technique. At the group level, energy intake (EI) was under-reported to a similar extent using both methods, with the ratio of EI:TEE was 0.76±0.20 for the NuDAM and 0.76±0.17 for the WFR. At the individual level, four subjects reported implausible levels of energy intake using the WFR method, compared to three using the NuDAM. Overall, moderate to high correlation coefficients (r=0.57-0.85) were found across energy and macronutrients except fat (r=0.24) between the two dietary measures. High agreement was observed between dietitians for estimates of energy and macronutrient derived for both the NuDAM (ICC=0.77-0.99; p<0.001) and WFR (ICC=0.82-0.99; p<0.001). All subjects preferred using the NuDAM over the WFR to record intake and were willing to use the novel method again over longer recording periods. This research program explored two novel approaches which utilised distinct technologies to aid in the nutritional management of adults with T2DM. In particular, this thesis makes a significant contribution to the evidence base surrounding the use of PhRs through the development, trial and evaluation of a novel mobile phone photo/voice dietary record. The NuDAM is an extremely promising advancement in the nutritional management of individuals with diabetes and other chronic conditions. Future applications lie in integrating the NuDAM with other technologies to facilitate practice across the remaining stages of the nutrition care process.