141 resultados para Non-linear behavior


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using polynomial regression and response surface analysis to examine the non-linearity between variables, this study demonstrates that better analytical nuances are required to investigate the relationships between constructs when the underlying theories suggest non-linearity. By utilising the Theory of Planned Behaviour (TPB), Ettlie’s adoption stages as well as employing data gathered from 162 owners of Small and Medium-sized Enterprises (SMEs), our findings reveal that subjective norms and attitude have differing influences upon behavioural intention in both the evaluation and trial stages of the adoption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen fertiliser is a major source of atmospheric N2O and over recent years there is growing evidence for a non-linear, exponential relationship between N fertiliser application rate and N2O emissions. However, there is still high uncertainty around the relationship of N fertiliser rate and N2O emissions for many cropping systems. We conducted year-round measurements of N2O emission and lint yield in four N rate treatments (0, 90, 180 and 270 kg N ha-1) in a cotton-fallow rotation on a black vertosol in Australia. We observed a nonlinear exponential response of N2O emissions to increasing N fertiliser rates with cumulative annual N2O emissions of 0.55 kg N ha-1, 0.67kg N ha-1, 1.07 kg N ha-1 and 1.89 kg N ha-1 for the four respective N fertiliser rates while no N response to yield occurred above 180N. The N fertiliser induced annual N2O EF factors increased from 0.13% to 0.29% and 0.50% for the 90N, 180N and 270N treatments respectively, significantly lower than the IPCC Tier 1 default value (1.0 %). This non-linear response suggests that an exponential N2O emissions model may be more appropriate for use in estimating emission of N2O from soils cultivated to cotton in Australia. It also demonstrates that improved agricultural N management practices can be adopted in cotton to substantially reduce N2O emissions without affecting yield potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to investigate the stress relaxation behavior of single chondrocytes using the Porohyperelastic (PHE) model and inverse Finite Element Analysis (FEA). Firstly, based on Atomic Force Microscopy (AFM) technique, we have found that the chondrocytes exhibited stress relaxation behavior. We explored the mechanism of this stress relaxation behavior and concluded that the intracellular fluid exuding out from the cells during deformation plays the most important role in the stress relaxation. Next, we have applied the inverse FEA technique to determine necessary material parameters for PHE model to simulate this stress relaxation behavior as this model is proven capable of capturing the non-linear behavior and the fluid-solid interaction during the stress relaxation of the single chondrocytes. It is observed that this PHE model can precisely capture the stress relaxation behavior of single chondrocytes and would be a suitable model for cell biomechanics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical investigation on mixed convection of a two-dimensional incompressible laminar flow over a horizontal flat plate with streamwise sinusoidal distribution of surface temperature has been performed for different values of Rayleigh number, Reynolds number and frequency of periodic temperature for constant Prandtl number and amplitude of periodic temperature. Finite element method adapted to rectangular non-uniform mesh elements by a non-linear parametric solution algorithm basis numerical scheme has been employed. The investigating parameters are the Rayleigh number, the Reynolds number and frequency of periodic temperature. The effect of variation of individual investigating parameters on mixed convection flow characteristics has been studied to observe the hydrodynamic and thermal behavior for while keeping the other parameters constant. The fluid considered in this study is air with Prandtl number 0.72. The results are obtained for the Rayleigh number range of 102 to 104, Reynolds number ranging from 1 to 100 and the frequency of periodic temperature from 1 to 5. Isotherms, streamlines, average and local Nusselt numbers are presented to show the effect of the different values of aforementioned investigating parameters on fluid flow and heat transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-linear finite deformations of articular cartilages under physiological loading conditions can be attributed to hyperelastic behavior. This paper contains experimental results of indentation tests in finite deformation and proposes an empirical based new generalized hyperelastic constitutive model to account for strain-rate dependency for humeral head cartilage tissues. The generalized model is based on existing hyperelastic constitutive relationships that are extensively used to represent biological tissues in biomechanical literature. The experimental results were obtained for three loading velocities, corresponding to low (1x10-3 s-1), moderate and high strain-rates (1x10-1 s-1), which represent physiological loading rates that are experienced in daily activities such as lifting, holding objects and sporting activities. Hyperelastic material parameters were identified by non linear curve fitting procedure. Analysis demonstrated that the material behavior of cartilage can be effectively decoupled into strain-rate independent(elastic) and dependent parts. Further, experiments conducted using different indenters indicated that the parameters obtained are significantly affected by the indenter size, potentially due to structural inhomogeneity of the tissue. The hyperelastic constitutive model developed in this paper opens a new avenue for the exploration of material properties of cartilage tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: Children with type 1 diabetes mellitus (DM1) may be at increased risk of psychosocial and adjustment difficulties. We examined behavioral outcomes six months post-diagnosis in a group of children with newly diagnosed DM1. Methods: This study formed part of a larger longitudinal project examining pathophysiology and neuropsychological outcomes in diabetic patients with or without diabetic ketoacidosis (DKA). Participants were 61 children (mean age 11.8 years, SD 2.7 years) who presented with a new diagnosis of DM1 at the Royal Children’s Hospital, Melbourne. Twenty-three (11 female) presented in DKA and 38 (14 female) without DKA. Parents completed the behavior assessment system for children, second edition six months post-diagnosis. Results: There was a non-linear relationship between age and behavior. Internalising problems (i.e. anxiety depression, withdrawal) peaked in the transition from childhood to adolescence; children aged 10–13 years had elevated rates relative to the normal population (t = 2.55, P = 0.018). There was a non-significant trend for children under 10 to display internalising problems (P = 0.052), but rates were not elevated in children over 13 (P = 0.538). Externalising problems were not significantly elevated in any age group. Interestingly, children who presented in DKA were at lower risk of internalising problems than children without DKA (t = 3.83, P < 0.001). There was no effect of DKA on externalising behaviors. Conclusions: Children transitioning from childhood to adolescence are at significant risk for developing internalising problems such as anxiety and lowered mood after diagnosis of DM1. Somewhat counter-intuitively, parents of children presenting in DKA reported fewer internalising symptoms than parents of children without DKA. These results highlight the importance of monitoring and supporting psychosocial adjustment in newly diagnosed children even when they seem physically well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a numerical study of the response of axially loaded concrete filled steel tube (CFST) columns under lateral impact loading using explicit non-linear finite element techniques. The aims of this paper are to evaluate the vulnerability of existing columns to credible impact events as well as to contribute new information towards the safe design of such vulnerable columns. The model incorporates concrete confinement, strain rate effects of steel and concrete, contact between the steel tube and concrete and dynamic relaxation for pre-loading, which is a relatively recent method for applying a pre-loading in the explicit solver. The finite element model was first verified by comparing results with existing experimental results and then employed to conduct a parametric sensitivity analysis. The effects of various structural and load parameters on the impact response of the CFST column were evaluated to identify the key controlling factors. Overall, the major parameters which influence the impact response of the column are the steel tube thickness to diameter ratio, the slenderness ratio and the impact velocity. The findings of this study will enhance the current state of knowledge in this area and can serve as a benchmark reference for future analysis and design of CFST columns under lateral impact.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During the past decade, a significant amount of research has been conducted internationally with the aim of developing, implementing, and verifying "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures. Application of these methods permits comprehensive assessment of the actual failure modes and ultimate strengths of structural systems in practical design situations, without resort to simplified elastic methods of analysis and semi-empirical specification equations. Advanced analysis has the potential to extend the creativity of structural engineers and simplify the design process, while ensuring greater economy and more uniform safety with respect to the ultimate limit state. The application of advanced analysis methods has previously been restricted to steel frames comprising only members with compact cross-sections that are not subject to the effects of local buckling. This precluded the use of advanced analysis from the design of steel frames comprising a significant proportion of the most commonly used Australian sections, which are non-compact and subject to the effects of local buckling. This thesis contains a detailed description of research conducted over the past three years in an attempt to extend the scope of advanced analysis by developing methods that include the effects of local buckling in a non-linear analysis formulation, suitable for practical design of steel frames comprising non-compact sections. Two alternative concentrated plasticity formulations are presented in this thesis: the refined plastic hinge method and the pseudo plastic zone method. Both methods implicitly account for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. The accuracy and precision of the methods for the analysis of steel frames comprising non-compact sections has been established by comparison with a comprehensive range of analytical benchmark frame solutions. Both the refined plastic hinge and pseudo plastic zone methods are more accurate and precise than the conventional individual member design methods based on elastic analysis and specification equations. For example, the pseudo plastic zone method predicts the ultimate strength of the analytical benchmark frames with an average conservative error of less than one percent, and has an acceptable maximum unconservati_ve error of less than five percent. The pseudo plastic zone model can allow the design capacity to be increased by up to 30 percent for simple frames, mainly due to the consideration of inelastic redistribution. The benefits may be even more significant for complex frames with significant redundancy, which provides greater scope for inelastic redistribution. The analytical benchmark frame solutions were obtained using a distributed plasticity shell finite element model. A detailed description of this model and the results of all the 120 benchmark analyses are provided. The model explicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. Its accuracy was verified by comparison with a variety of analytical solutions and the results of three large-scale experimental tests of steel frames comprising non-compact sections. A description of the experimental method and test results is also provided.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis deals with the problem of the instantaneous frequency (IF) estimation of sinusoidal signals. This topic plays significant role in signal processing and communications. Depending on the type of the signal, two major approaches are considered. For IF estimation of single-tone or digitally-modulated sinusoidal signals (like frequency shift keying signals) the approach of digital phase-locked loops (DPLLs) is considered, and this is Part-I of this thesis. For FM signals the approach of time-frequency analysis is considered, and this is Part-II of the thesis. In part-I we have utilized sinusoidal DPLLs with non-uniform sampling scheme as this type is widely used in communication systems. The digital tanlock loop (DTL) has introduced significant advantages over other existing DPLLs. In the last 10 years many efforts have been made to improve DTL performance. However, this loop and all of its modifications utilizes Hilbert transformer (HT) to produce a signal-independent 90-degree phase-shifted version of the input signal. Hilbert transformer can be realized approximately using a finite impulse response (FIR) digital filter. This realization introduces further complexity in the loop in addition to approximations and frequency limitations on the input signal. We have tried to avoid practical difficulties associated with the conventional tanlock scheme while keeping its advantages. A time-delay is utilized in the tanlock scheme of DTL to produce a signal-dependent phase shift. This gave rise to the time-delay digital tanlock loop (TDTL). Fixed point theorems are used to analyze the behavior of the new loop. As such TDTL combines the two major approaches in DPLLs: the non-linear approach of sinusoidal DPLL based on fixed point analysis, and the linear tanlock approach based on the arctan phase detection. TDTL preserves the main advantages of the DTL despite its reduced structure. An application of TDTL in FSK demodulation is also considered. This idea of replacing HT by a time-delay may be of interest in other signal processing systems. Hence we have analyzed and compared the behaviors of the HT and the time-delay in the presence of additive Gaussian noise. Based on the above analysis, the behavior of the first and second-order TDTLs has been analyzed in additive Gaussian noise. Since DPLLs need time for locking, they are normally not efficient in tracking the continuously changing frequencies of non-stationary signals, i.e. signals with time-varying spectra. Nonstationary signals are of importance in synthetic and real life applications. An example is the frequency-modulated (FM) signals widely used in communication systems. Part-II of this thesis is dedicated for the IF estimation of non-stationary signals. For such signals the classical spectral techniques break down, due to the time-varying nature of their spectra, and more advanced techniques should be utilized. For the purpose of instantaneous frequency estimation of non-stationary signals there are two major approaches: parametric and non-parametric. We chose the non-parametric approach which is based on time-frequency analysis. This approach is computationally less expensive and more effective in dealing with multicomponent signals, which are the main aim of this part of the thesis. A time-frequency distribution (TFD) of a signal is a two-dimensional transformation of the signal to the time-frequency domain. Multicomponent signals can be identified by multiple energy peaks in the time-frequency domain. Many real life and synthetic signals are of multicomponent nature and there is little in the literature concerning IF estimation of such signals. This is why we have concentrated on multicomponent signals in Part-H. An adaptive algorithm for IF estimation using the quadratic time-frequency distributions has been analyzed. A class of time-frequency distributions that are more suitable for this purpose has been proposed. The kernels of this class are time-only or one-dimensional, rather than the time-lag (two-dimensional) kernels. Hence this class has been named as the T -class. If the parameters of these TFDs are properly chosen, they are more efficient than the existing fixed-kernel TFDs in terms of resolution (energy concentration around the IF) and artifacts reduction. The T-distributions has been used in the IF adaptive algorithm and proved to be efficient in tracking rapidly changing frequencies. They also enables direct amplitude estimation for the components of a multicomponent

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a general methodology for learning articulated motions that, despite having non-linear correlations, are cyclical and have a defined pattern of behavior Using conventional algorithms to extract features from images, a Bayesian classifier is applied to cluster and classify features of the moving object. Clusters are then associated in different frames and structure learning algorithms for Bayesian networks are used to recover the structure of the motion. This framework is applied to the human gait analysis and tracking but applications include any coordinated movement such as multi-robots behavior analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Similarity solutions for flow over an impermeable, non-linearly (quadratic) stretching sheet were studied recently by Raptis and Perdikis (Int. J. Non-linear Mech. 41 (2006) 527–529) using a stream function of the form ψ=αxf(η)+βx2g(η). A fundamental error in their problem formulation is pointed out. On correction, it is shown that similarity solutions do not exist for this choice of ψ

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Natural convection of a two-dimensional laminar steady-state incompressible fluid flow in a modified rectangular enclosure with sinusoidal corrugated top surface has been investigated numerically. The present study has been carried out for different corrugation frequencies on the top surface as well as aspect ratios of the enclosure in order to observe the change in hydrodynamic and thermal behavior with constant corrugation amplitude. A constant flux heat source is flush mounted on the top sinusoidal wall, modeling a wavy sheet shaded room exposed to sunlight. The flat bottom surface is considered as adiabatic, while the both vertical side walls are maintained at the constant ambient temperature. The fluid considered inside the enclosure is air having Prandtl number of 0.71. The numerical scheme is based on the finite element method adapted to triangular non-uniform mesh element by a non-linear parametric solution algorithm. The results in terms of isotherms, streamlines and average Nusselt numbers are obtained for the Rayleigh number ranging from 10^3 to 10^6 with constant physical properties for the fluid medium considered. It is found that the convective phenomena are greatly influenced by the presence of the corrugation and variation of aspect ratios.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Unsteady natural convection due to differentially heating of the sinusoidal corrugated side walls of a modified square enclosure has been numerically investigated. The fluid inside the enclosure is air, initially as quiescent. The flat top and bottom surfaces are considered as adiabatic. The numerical scheme is based on the finite element method adapted to triangular non-uniform mesh element by a non-linear parametric solution algorithm. The results are obtained for the Rayleigh number, Ra ranging from 1e+05 to 1e+08 for different corrugation amplitude and frequency with constant physical properties for the fluid medium considered. The streamlines, isotherms and average Nusselt numbers are presented to observe the effect of sudden heating and its consequent transient behavior on fluid flow and heat transfer characteristics for the range of governing parameters. The present results show that the transient phenomena are greatly influenced by the variation of the aforementioned parameters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose - During multitasking, humans handle multiple tasks through task switching or engage in multitasking information behaviors. For example, a user switches between seeking new kitchen information and medical information. Recent studies provide insights these complex multitasking human information behaviors (HIB). However, limited studies have examined the interplay between information and non-information tasks. Design/methodology/approach - The goal of the paper was to examine the interplay of information and non-information task behaviors. Findings - This paper explores and speculates on a new direction in HIB research. The nature of HIB as a multitasking activity including the interplay of information and non-information behavior tasks, and the relation between multitasking information behavior to cognitive style and individual differences, is discussed. A model of multitasking between information and non-information behavior tasks is proposed. Practical implications/limitations - Multitasking information behavior models should include the interplay of information and non-information tasks, and individual differences and cognitive styles. Originality/value - The paper is the first information science theoretical examination of the interplay between information and non-information tasks. © Emerald Group Publishing Limited.