64 resultados para Nickel-titanium alloys


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium alloys are attracting increasing research interests due to their low density, high specific strength, good machinability and availability as compared to other structural materials. However, the deformation and failure mechanisms of nanocrystalline (nc) Mg alloys have not been well understood. In this work, the deformation behaviour of nc Mg-5Al alloys was investigated using compression test, with focus on the effects of grain size. The average grain size of the Mg- Al alloy was changed from 13 to 50 nm via mechanical milling. The results showed that grain size had a significant influence on the yield stress and ductility of the Mg alloys, and the materials exhibited increased strain rate sensitivity with a decrease in grain size. The deformation mechanisms were also strongly dependent on the grain sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With many important developments over the last century, nowadays orthopedic bone plate now excels over other types of internal fixators in bone fracture fixation. The developments involve the design, material and implementation techniques of the plates. This paper aims to review the evolution in implementation technique and biomaterial of the orthopedic bone plates. Plates were initially used to fix the underlying bones firmly. Accordingly, Compression plate (CP), Dynamic compression plate (DCP), Limited contact dynamic compression plate (LC-DCP) and Point contact fixator (PC-Fix) were developed. Later, the implementation approach was changed to locking, and the Less Invasive Stabilization System (LISS) plate was introduced as a result. Finally, a combination of both of these approaches has been used by introducing the Locking Compression Plate (LCP). Currently, precontoured LCPs are mainly used for bone fracture fixation. In parallel with structure and implementation techniques, numerous advances have occurred in biomaterials of the plates. Titanium and stainless steel alloys are now the most common biomaterials in production of orthopedic bone plates. However, regarding the biocompatibility, bioactivity and biodegradability characteristics of Mg alloys, Ta alloys, SMAs, carbon fiber composites and bioceramics, these materials are considered as potentially suitable for plates. However, due to poor mechanical properties, they have very limited applications. Therefore, further studies are required in future to solve these problems and make them feasible for heavy-duty bone plates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Argon ions were implanted on titanium discs to study its effect on bone cell adhesion and proli feration. Polished titanium discs were prepared and implanted with argon ions with different doses. Afterwards the samples were sterilized using UV light, inocu lated with human bone cells and incubated. Once fixed and rinsed, image analysis has been used to quantify the number of cells attached to the titanium discs. Cell proliferation tests were also conducted after a period of 120 hours. Cell adhesion was seen to be higher with ion im planted surface. SEM analysis has shown that the cells attached spread more on ion implanted surface. The numbers of cells attached were seen to be higher on implanted surfaces; they tend to occupy wider areas with healthier cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interstellar gas abundances (Clayton et al., 1986) suggest that titanium may be bound up in dust and indeed, excess titanium in carbonaceous chondrites is attributed to mixing of interstellar and Solar System materials (Morton, 1974). Fine-grained chondritic interplanetary dust particles (lOPs) of cometary origin are relatively pristine early Solar System materials (Mackinnon and Rietmeijer, 1987; Rietmeijer, 1987) and show chemical and mineralogical signatures related to a pre-solar or nebular origin. For example, large OtH ratios suggest a presolar or interstellar dust component in some chondritic lOPs(Mackinnon and Rietmeijer, 1987). Ti/Si ratios (normalized to bulk CI) in lOPs and carbonaceous chondrite matrices exceed solar abundances but are similar to dust from comet Halley (Jessberger et al., 1987). The Ti-distribution in chondritic lOPs shows major, small-scale « 0.1 urn) variations (Flynn et al., 1978) consistent with heterogeneously distributed Ti-bearingphases. Analytical electron microscope (AEM) studies, in fact, have identified platey grains of Ti-metal, Ti407 and Ti s09 in two different lOPs (Mackinnon and Rietmeijer, 1987). The occurrence of Ti407 was related in situ low-temperature aqueous alteration and therefore implied the presence of BaTi03 (Rietmeijer and Mackinnon, 1984). Yet, the presence ofTis09 in an lOp which shows no evidence of aqueous alteration (Rietmeijer.and McKay, 1986) requires a different interpretation. The distribution of Ti-oxides in chondritic lOPs were investigated with ultra-microtomed thin sections of fluffy chondri tic lOP U2011*B (lSC allocation U2011C2) using a lEOL 2000FX AEM operating at an accelerating voltage of 200kV and with an attached Tracor Northern TN5500 energy dispersive spectrometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mineralogical survey of chondritic interplanetary dust particles (IDPs)showed that these micrometeorites differ significantly in form and texture from components of carbonaceous chondrites and contain some mineral assemblages which do not occur in any meteorite class1. Models of chondritic IDP mineral evolution generally ignore the typical (ultra-) fine grain size of consituent minerals which range between 0.002-0.1µm in size2. The chondritic porous (CP) subset of chondritic IDPs is probably debris from short period comets although evidence for a cometary origin is still circumstantial3. If CP IDPs represent dust from regions of the Solar System in which comet accretion occurred, it can be argued that pervasive mineralogical evolution of IDP dust has been arrested due to cryogenic storage in comet nuclei. Thus, preservation in CP IDPs of "unusual meteorite minerals", such as oxides of tin, bismuth and titanium4, should not be dismissed casually. These minerals may contain specific information about processes that occurred in regions of the solar nebula, and early Solar System, which spawned the IDP parent bodies such as comets and C, P and D asteroids6. It is not fully appreciated that the apparent disparity between the mineralogy of CP IDPs and carbonaceous chondrite matrix may also be caused by the choice of electron-beam techniques with different analytical resolution. For example, Mg-Si-Fe distributions of Cl matrix obtained by "defocussed beam" microprobe analyses are displaced towards lower Fe-values when using analytical electron microscope (AEM)data which resolve individual mineral grains of various layer silicates and magnetite in the same matrix6,7. In general, "unusual meteorite minerals" in chondritic IDPs, such as metallic titanium, Tin01-n(Magneli phases) and anatase8 add to the mineral data base of fine-grained Solar System materials and provide constraints on processes that occurred in the early Solar System.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed analytical electron microscope analyses of four fine-grained chondritic porous interplanetary dust particles (IDPs)reveal the presence of titanium oxide Magneli phases, TinO2n-1 (n=4,5,6), and rare Ti-metal. The titanium minerals are indigenous to these chondritic IDPs. The association of Magneli phases, Ti-metal, and carbonaceous material in chondritic IDPs, along with the grain size distributions support in situ solid carbon gasification in these extraterrestrial particles. The active catalyst in this process is titanium metal that we infer may be of interstellar origin. This favorable catalysis uniquely leads to the formation of Magneli phases. As chondritic IDPs may be solid debris of short-period comets, our data indicate that nuclei of short-period comets may show distinctive chemical reactions that lead to Ti-mineral assemblages that typically include Magneli phases. The proposed model provides a plausible mechnism to explain the higher solid carbon content of chondritic IDPs relative to bulk carbon abundances typical for carbonaceous chondrite matrices that represent another type of more evolved, that is, metamorphosed, undifferentiated solar system bodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intercalated Archean komatiites and dacites sit above a thick footwall dacite unit in the host rock succession at the Black Swan Nickel Mine, north of Kalgoorlie in the Yilgarn Craton, Western Australia. Both lithofacies occur in units that vary in scale from laterally extensive at the scale of the mine lease to localized, thin, irregular bodies, from > 100 m thick to only centimetres thick. Some dacites are only slightly altered and deformed, and are interpreted to post-date major deformation and alteration (late porphyries). However, the majority of the dacites display evidence of deformation, especially at contacts, and metamorphism, varying from silicification and chlorite alteration at contacts to pervasive low grade regional metamorphic alteration represented by common assemblages of chlorite, sericite and albite. Texturally, the dacites vary from entirely massive and coherent to partially brecciated to totally brecciated. Strangely, some dacites are coherent at the margins and brecciated internally. Breccia textures vary from cryptically defined, to blocky, closely packed, in situ jig-saw fit textures with secondary minerals in fractures between clasts, to more apparent matrix rich textures with round clast forms, giving apparent conglomerate textures. Some clast zones have multi-coloured clasts, giving the impression of varied provenance. Strangely however, all these textural variants have gradational relationships with each other, and no bedding or depositional structures are present. This indicates that all textures have an in situ origin. The komatiites are generally altered and pervasively carbonate veined. Preservation of original textures is patchy and local, but includes coarse adcumulate, mesocumulate, orthocumulate, crescumulate-harrisite and occasionally spinifex textures. Where original contacts between komatiites and dacites are preserved intact (i.e. not sheared or overprinted by alteration), the komatiites have chilled margins, whereas the dacites do not. The margins of the dacites are commonly silicified, and inclusions of dacite occur in komatiite, even at the top contacts of komatiite units, but komatiite clasts do not occur in the dacites. The komatiites therefore were emplaced as sills into the dacites, and the intercalated relationships are interpreted as intrusive. The brecciation and alteration in the dacites are interpreted as being largely due to hydraulic fracturing and alteration induced by contact metamorphic effects and hydrothermal alteration deriving from the intrusion of komatiites into the felsic pile. The absence of autobreccia and hyaloclastite textures in the dacites suggest that they were emplaced as an earlier intrusive (sill?) complex at a high level in the crust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium oxide nanotubes were obtained by an electrochemical anodization method. Scanning electron microscope results demonstrate that the diameter of the tubes is about 120 nm and the length of the tubes is around 13 μm. Transmission electron microscope results indicate that the nanotubes are assembled by numerous nanoparticles and tube-like structure remains well after heat treatment at 400-600 °C. The photocatalysis performance of the nanotubes was evaluated in terms of the decomposition rate of methyl orange under UV irradiation. The results show that the photocatalytic activity was enhanced through the heating treatment of the nanotubes, and the nanotubes heated at 600 °C exhibits the best photocatalytic activity. X-ray diffraction patterns indicate that there is no phase transformation during the heat treatment. Therefore, the enhanced activity can be attributed to the improvement of nanotubes crystallinity, which may provide more insights about the effect of the crystallinity on the photocatalytic performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation behaviour of Mg-5%AI alloys and its dependence with gain size and strain rate were investigated using nanoindentation. The grain sizes were successfully reduced below 100 nm via mechanical alloying method. It was found that the strain rate sensitivity increased with decreasing grain size. The smaller activation volumes and the plastic deformation mechanisms involving grain boundary activities are considered to contribute to the increase of strain rate sensitivity in the nanocrystalline alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium and its alloys have shown a great potential in effective hydrogen storage due to their advantages of high volumetric/gravimetric hydrogen storage capacity and low cost. However, the use of these materials in fuel cells for automotive applications at the present time is limited by high hydrogenation temperature and sluggish sorption kinetics. This paper presents the recent results of design and development of magnesium-based nanocomposites demonstrating the catalytic effects of carbon nanotubes and transition metals on hydrogen adsorption in these materials. The results are promising for the application of magnesium materials for hydrogen storage, with significantly reduced absorption temperatures and enhanced ab/desorption kinetics. High level Density Functional Theory calculations support the analysis of the hydrogenation mechanisms by revealing the detailed atomic and molecular interactions that underpin the catalytic roles of incorporated carbon and titanium, providing clear guidance for further design and development of such materials with better hydrogen storage properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sol-gel synthesis in varied gravity is only a relatively new topic in the literature and further investigation is required to explore its full potential as a method to synthesise novel materials. Although trialled for systems such as silica, the specific application of varied gravity synthesis to other sol-gel systems such as titanium has not previously been undertaken. Current literature methods for the synthesis of sol-gel material in reduced gravity could not be applied to titanium sol-gel processing, thus a new strategy had to be developed in this study. To successfully conduct experiments in varied gravity a refined titanium sol-gel chemical precursor had to be developed which allowed the single solution precursor to remain un-reactive at temperatures up to 50oC and only begin to react when exposed to a pressure decrease from a vacuum. Due to the new nature of this precursor, a thorough characterisation of the reaction precursors was subsequently undertaken with the use of techniques such as Nuclear Magnetic Resonance, Infra-red and UV-Vis spectroscopy in order to achieve sufficient understanding of precursor chemistry and kinetic stability. This understanding was then used to propose gelation reaction mechanisms under varied gravity conditions. Two unique reactor systems were designed and built with the specific purpose to allow the effects of varied gravity (high, normal, reduced) during synthesis of titanium sol-gels to be studied. The first system was a centrifuge capable of providing high gravity environments of up to 70 g’s for extended periods, whilst applying a 100 mbar vacuum and a temperature of 40-50oC to the reaction chambers. The second system to be used in the QUT Microgravity Drop Tower Facility was also required to provide the same thermal and vacuum conditions used in the centrifuge, but had to operate autonomously during free fall. Through the use of post synthesis characterisation techniques such as Raman Spectroscopy, X-Ray diffraction (XRD) and N2 adsorption, it was found that increased gravity levels during synthesis, had the greatest effect on the final products. Samples produced in reduced and normal gravity appeared to form amorphous gels containing very small particles with moderate surface areas. Whereas crystalline anatase (TiO2), was found to form in samples synthesised above 5 g with significant increases in crystallinity, particle size and surface area observed when samples were produced at gravity levels up to 70 g. It is proposed that for samples produced in higher gravity, an increased concentration gradient of water is forms at the bottom of the reacting film due to forced convection. The particles formed in higher gravity diffuse downward towards this excess of water, which favours the condensation reaction of remaining sol gel precursors with the particles promoting increased particle growth. Due to the removal of downward convection in reduced gravity, particle growth due to condensation reaction processes are physically hindered hydrolysis reactions favoured instead. Another significant finding from this work was that anatase could be produced at relatively low temperatures of 40-50oC instead of the conventional method of calcination above 450oC solely through sol-gel synthesis at higher gravity levels. It is hoped that the outcomes of this research will lead to an increased understanding of the effects of gravity on chemical synthesis of titanium sol-gel, potentially leading to the development of improved products suitable for diverse applications such as semiconductor or catalyst materials as well as significantly reducing production and energy costs through manufacturing these materials at significantly lower temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CO2-methane reformation reaction over Ni/SiO2 catalysts has been extensively studied using a range of temperature-programmed techniques and characterisation of the catalysts by thermogravimetry (TG), X-ray diffraction (XRD) and electron microscopy (TEM). The results indicate a strong correlation between the microstructure of the catalyst and its performance. The role of both CO2 and CH4 in the reaction has been investigated and the role of methyl radicals in the reaction mechanism highlighted. A reaction mechanism involving dissociatively adsorbed CO2 and methyl radicals has been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of immobilised TiO2 for the purification of polluted water streams introduces the necessity to evaluate the effect of mechanisms such as the transport of pollutants from the bulk of the liquid to the catalyst surface and the transport phenomena inside the porous film. Experimental results of the effects of film thickness on the observed reaction rate for both liquid-side and support-side illumination are here compared with the predictions of a one-dimensional mathematical model of the porous photocatalytic slab. Good agreement was observed between the experimentally obtained photodegradation of phenol and its by-products, and the corresponding model predictions. The results have confirmed that an optimal catalyst thickness exists and, for the films employed here, is 5 μm. Furthermore, the modelling results have highlighted the fact that porosity, together with the intrinsic reaction kinetics are the parameters controlling the photocatalytic activity of the film. The former by influencing transport phenomena and light absorption characteristics, the latter by naturally dictating the rate of reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress corrosion cracking (SCC) is a well known form of environmental attack in low carat gold jewellery. It is desirable to have a quick, easy and cost effective way to detect SCC in alloys and prevent them from being used and later failing in their application. A facile chemical method to investigate SCC of 9 carat gold alloys is demonstrated. It involves a simple application of tensile stress to a wire sample in a corrosive environment such as 1–10 % FeCl3 which induces failure in less than 5 minutes. In this study three quaternary (Au, Ag, Cu and Zn) 9 carat gold alloy compositions were investigated for their resistance to SCC and the relationship between time to failure and processing conditions is studied. It is envisaged that the use of such a rapid and facile screening procedure at the production stage may readily identify alloy treatments that produce jewellery that will be susceptible to SCC in its lifetime.