93 resultados para Newborn infants - Metabolism
Resumo:
The way in which metabolic fuels are utilised can alter the expression of behaviour in the interests of regulating energy balance and fuel availability. This is consistent with the notion that the regulation of appetite is a psychobiological process, in which physiological mediators act as drivers of behaviour. The glycogenostatic theory suggests that glycogen availability is central in eliciting negative feedback signals to restore energy homeostasis. Due to its limited storage capacity, carbohydrate availability is tightly regulated and its restoration is a high metabolic priority following depletion. It has been proposed that such depletion may act as a biological cue to stimulate compensatory energy intake in an effort to restore availability. Due to the increased energy demand, aerobic exercise may act as a biological cue to trigger compensatory eating as a result of perturbations to muscle and liver glycogen stores. However, studies manipulating glycogen availability over short-term periods (1-3 days) using exercise, diet or both have often produced equivocal findings. There is limited but growing evidence to suggest that carbohydrate balance is involved in the short-term regulation of food intake, with a negative carbohydrate balance having been shown to predict greater ad libitum feeding. Furthermore, a negative carbohydrate balance has been shown to be predictive of weight gain. However, further research is needed to support these findings as the current research in this area is limited. In addition, the specific neural or hormonal signal through which carbohydrate availability could regulate energy intake is at present unknown. Identification of this signal or pathway is imperative if a casual relationship is to be established. Without this, the possibility remains that the associations found between carbohydrate balance and food intake are incidental.
Resumo:
Adult articular cartilage has depth-dependent mechanical and biochemical properties which contribute to zone-specific functions. The compressive moduli of immature cartilage and tissue-engineered cartilage are known to be lower than those of adult cartilage. The objective of this study was to determine if such tissues exhibit depth-dependent compressive properties, and how these depth-varying properties were correlated with cell and matrix composition of the tissue. The compressive moduli of fetal and newborn bovine articular cartilage increased with depth (p < 0.05) by a factor of 4-5 from the top 0.1 mm (28 +/- 13 kPa, 141 +/- 10 kPa, respectively) to 1 mm deep into the tissue. Likewise, the glycosaminoglycan and collagen content increased with depth (both p < 0.001), and correlated with the modulus (both p < 0.01). In contrast, tissue-engineered cartilage formed by either layering or mixing cells from the superficial and middle zone of articular cartilage exhibited similarly soft regions at both construct surfaces, as exemplified by large equilibrium strains. The properties of immature cartilage may provide a template for developing tissue-engineered cartilage which aims to repair cartilage defects by recapitulating the natural development and growth processes. These results suggest that while depth-dependent properties may be important to engineer into cartilage constructs, issues other than cell heterogeneity must be addressed to generate such tissues. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The functional properties of cartilaginous tissues are determined predominantly by the content, distribution, and organization of proteoglycan and collagen in the extracellular matrix. Extracellular matrix accumulates in tissue-engineered cartilage constructs by metabolism and transport of matrix molecules, processes that are modulated by physical and chemical factors. Constructs incubated under free-swelling conditions with freely permeable or highly permeable membranes exhibit symmetric surface regions of soft tissue. The variation in tissue properties with depth from the surfaces suggests the hypothesis that the transport processes mediated by the boundary conditions govern the distribution of proteoglycan in such constructs. A continuum model (DiMicco and Sah in Transport Porus Med 50:57-73, 2003) was extended to test the effects of membrane permeability and perfusion on proteoglycan accumulation in tissue-engineered cartilage. The concentrations of soluble, bound, and degraded proteoglycan were analyzed as functions of time, space, and non-dimensional parameters for several experimental configurations. The results of the model suggest that the boundary condition at the membrane surface and the rate of perfusion, described by non-dimensional parameters, are important determinants of the pattern of proteoglycan accumulation. With perfusion, the proteoglycan profile is skewed, and decreases or increases in magnitude depending on the level of flow-based stimulation. Utilization of a semi-permeable membrane with or without unidirectional flow may lead to tissues with depth-increasing proteoglycan content, resembling native articular cartilage.
Resumo:
This study compared voluntary (VOL) and electrically evoked isometric contractions by muscle stimulation (EMS) for changes in biceps brachii muscle oxygenation (tissue oxygenation index, ΔTOI) and total haemoglobin concentration (ΔtHb = oxygenated haemoglobin + deoxygenated haemoglobin) determined by near-infrared spectroscopy. Twelve men performed EMS with one arm followed 24 h later by VOL with the contralateral arm, consisting of 30 repeated (1-s contraction, 1-s relaxation) isometric contractions at 30% of maximal voluntary contraction (MVC) for the first 60 s, and maximal intensity contractions thereafter (MVC for VOL and maximal tolerable current at 30 Hz for EMS) until MVC decreased ∼30% of pre-exercise MVC. During the 30 contractions at 30% MVC, ΔTOI decrease was significantly (P < 0.05) greater and ∼tHb was significantly (P < 0.05) lower for EMS than VOL, suggesting that the metabolic demand for oxygen in EMS is greater than VOL at the same torque level. However, during maximal intensity contractions, although EMS torque (∼40% of VOL) was significantly (P < 0.05) lower than VOL, ΔTOI was similar and ΔtHb was significantly (P < 0.05) lower for EMS than VOL towards the end, without significant differences between the two sessions in the recovery period. It is concluded that the oxygen demand of the activated biceps brachii muscle in EMS is comparable to VOL at maximal intensity. © Springer-Verlag 2009.
Resumo:
PKU is a genetically inherited inborn error of metabolism caused by a deficiency of the enzyme phenylalanine hydroxylase. The failure of this enzyme causes incomplete metabolism of protein ingested in the diet, specifically the conversion of one amino acid, phenylalanine, to tyrosine, which is a precursor to the neurotransmitter dopamine. Rising levels of phenylalanine is toxic to the developing brain, disrupting the formation of white matter tracts. The impact of tyrosine deficiency is not as well understood, but is hypothesized to lead to a low dopamine environment for the developing brain. Detection in the newborn period and continuous treatment (a low protein phe-restricted diet supplemented with phenylalanine-free protein formulas) has resulted in children with early and continuously treated PKU now developing normal I.Q. However, deficits in executive function (EF) are common, leading to a rate of Attention Deficit Hyperactivity Disorder (ADHD) up to five times the norm. EF worsens with exposure to higher phenylalanine levels, however recent research has demonstrated that a high phenylalanine to tyrosine ratio (phenylalanine:tyrosine ratio), which is hypothesised to lead to poorer dopamine function, has a more negative impact on EF than phenylalanine levels alone. Research and treatment of PKU is currently phenylalanine-focused, with little investigation of the impact of tyrosine on neuropsychological development. There is no current consensus as to the veracity of tyrosine monitoring or treatment in this population. Further, the research agenda in this population has demonstrated a primary focus on EF impairment alone, even though there may be additional neuropsychological skills compromised (e.g., mood, visuospatial deficits). The aim of this PhD research was to identify residual neuropsychological deficits in a cohort of children with early and continuously treated phenylketonuria, at two time points in development (early childhood and early adolescence), separated by eight years. In addition, this research sought to determine which biochemical markers were associated with neuropsychological impairments. A clinical practice survey was also undertaken to ascertain the current level of monitoring/treatment of tyrosine in this population. Thirteen children with early and continuously treated PKU were tested at mean age 5.9 years and again at mean age 13.95 years on several neuropsychological measures. Four children with hyperphenylalaninemia (a milder version of PKU) were also tested at both time points and provide a comparison group in analyses. Associations between neuropsychological function and biochemical markers were analysed. A between groups analysis in adolescence was also conducted (children with PKU compared to their siblings) on parent report measures of EF and mood. Minor EF impairments were evident in the PKU group by age 6 years and these persisted into adolescence. Life-long exposure to high phenylalanine:tyrosine ratio and/or low tyrosine independent of phenylalanine were significantly associated with EF impairments at both time points. Over half the children with PKU showed severe impairment on a visuospatial task, and this was associated only with concurrent levels of tyrosine in adolescence. Children with PKU also showed a statistically significant decline in a language comprehension task from 6 years to adolescence (going from normal to subnormal), this deficit was associated with lifetime levels of phenylalanine. In comparison, the four children with hyperphenylalaninemia demonstrated normal function at both time points, across all measures. No statistically significant differences were detected between children with PKU and their siblings on the parent report of EF and mood. However, depressive symptoms were significantly correlated with: EF; long term high phe:tyr exposure; and low tyrosine levels independent of phenylalanine. The practice survey of metabolic clinics from 12 countries indicated a high level of variability in terms of monitoring/treatment of tyrosine in this population. Whilst over 80% of clinics surveyed routinely monitored tyrosine levels in their child patients, 25% reported treatment strategies to increase tyrosine (and thereby lower the phenylalanine:tyrosine ratio) under a variety of patient presentation conditions. Overall, these studies have shown that EF impairments associated with PKU provide support for the dopamine-deficiency model. A language comprehension task showed a different trajectory, serving a timely reminder that non-EF functions also remain vulnerable in this population; and that normal function in childhood does not guarantee normal function by adolescence. Mood impairments were associated with EF impairments as well as long term measures of phenylalanine:tyrosine and/or tyrosine. The implications of this research for enhanced clinical guidelines are discussed given varied current practice.
Resumo:
Stormwater pollution has been recognised as one of the main causes of aquatic ecosystem degradation and poses a significant threat to both the goal of ecological sustainable development as well as human health and wellbeing. In response, water sensitive urban design (WSUD) practices have been put forward as a strategy to mitigate the detrimental impacts of urban stormwater runoff quality and to safeguard ecosystem functions. However, despite studies that support its efficiency in urban stormwater management, the mainstreaming of WSUD remains a significant challenge. This paper proposes that viewing WSUD through the lens of the integrated urban metabolism framework which encourages an interdisciplinary approach and facilitates dialogue through knowledge transfer is a strategy in which the implementation of WSUD can be mainstreamed.
Resumo:
Urban settlements, with their role as economic and governance nerve centres, are rapidly expanding in size and in consumption of resources, and consequently have significant impacts on the environment. The transition to an ‘eco-city’ - an urban settlement that adopts the goals and principles in the urban metabolism model - needs to occur to meet the challenges posed by a multitude of pressures including population growth, climate change and resource depletion. Thus, the adoption and integration of ‘sustainable development’ into the management of urban growth is one of the most critical governance issues for urban settlements. A framework in which sustainable development can be achieved is through the lenses of the established theoretical concept of ‘urban metabolism’. The key facet of the proposed ‘Integrated Urban Metabolism Framework’ is the provision of a platform whereby different fields can appreciate, absorb and learn from other areas, to increase the understanding of where each and every one of the pieces fit together in order to create a larger, holistic approach to the currently stagnant problem of unsustainable development.
Resumo:
Preterm infants commence breastfeeding when health-care professionals deem them to be ready. However, the optimal timing for commencement of breastfeeding is unclear. Currently, there is little guidance for neonatal care providers to decide when to initiate breastfeeding among preterm infants. A mixed-methods study was conducted to develop and test the Preterm Sucking Readiness (PTSR) scale in four phases. The first phase involved a chart audit to explore the use of age as a criterion by investigating when preterm infants meet feeding milestones as well as other factors that may affect an infant’s readiness to engage in nutritive sucking behaviour. The second phase utilised focus groups to explore and define how neonatal care providers decide when to commence breastfeeding. To gain consensus on the criteria mentioned by the focus groups, a Delphi survey was conducted in phase 3, involving neonatal providers across Australia and New Zealand. Phase 4 of the study involved an observational study that was used to test the six-item PTSR. The age at which specific feeding milestones were reached was consistent with what has been previously described in the literature. The chart audit showed that the time taken to the first feeding attempt in the preterm infant population was affected by gestational age at birth, birth weight, and specific interventions. Staff also considered age along with other criteria when deciding when to initiate feeding. Consensus on nine criteria for inclusion into the six-item PTSR was achieved using the Delphi technique. Three items of PTSR showed significant differences between the preterm and fullterm infant groups. Only two items, feeding-readiness behaviour and low pulse oximetry during handling, explained the variance in breastfeeding behaviour. The inter-rater variability ranged between moderate and very good for the PTSR items. The results of this study indicate the importance of assessing behavioural cues as an indication of breastfeeding readiness in the preterm infant population, once an infant is deemed physiologically stable. Age continues to be a factor in some clinicians' decisions to commence breastfeeding. However, age alone cannot be used to decide if an infant is ready to engage in breastfeeding. Further research is needed to confirm these findings.
Resumo:
Introduction: Feeding on demand supports an infant’s innate capacity to respond to hunger and satiety cues and may promote later self-regulation of intake. Our aim was to examine whether feeding style (on demand vs to schedule) is associated with weight gain in early life. Methods: Participants were first-time mothers of healthy term infants enrolled NOURISH, an RCT evaluating an intervention to promote positive early feeding practices. Baseline assessment occurred when infants were aged 2-7 months. Infants able to be categorised clearly as feeding on demand or to schedule (mothers self report) were included in the logistic regression analysis. The model was adjusted for gender, breastfeeding and maternal age, education, BMI. Weight gain was defined as a positive difference in baseline minus birthweight z-scores (WHO standards) which indicated tracking above weight percentile. Results: Data from 356 infants with a mean age of 4.4 (SD 1.0) months were available. Of these, 197 (55%) were fed on demand, 42 (12%) were fed on schedule. There was no statistical association between feeding style and weight gain [OR=0.72 (95%CI 0.35-1.46), P=0.36]. Formula fed infants were three times more likely to be fed on schedule and formula feeding was independently associated with increased weight gain [OR=2.02 (95%CI 1.11-3.66), P=0.021]. Conclusion: In this preliminary analysis the association between feeding style and weight gain did not reach statistical significance, however , the effect size may be clinically relevant and future analysis will include the full study sample (N=698).
Resumo:
Background: Tenofovir has been associated with renal phosphate wasting, reduced bone mineral density, and higher parathyroid hormone levels. The aim of this study was to carry out a detailed comparison of the effects of tenofovir versus non-tenofovir use on calcium, phosphate and, vitamin D, parathyroid hormone (PTH), and bone mineral density. Methods: A cohort study of 56 HIV-1 infected adults at a single centre in the UK on stable antiretroviral regimes comparing biochemical and bone mineral density parameters between patients receiving either tenofovir or another nucleoside reverse transcriptase inhibitor. Principal Findings: In the unadjusted analysis, there was no significant difference between the two groups in PTH levels (tenofovir mean 5.9 pmol/L, 95% confidence intervals 5.0 to 6.8, versus non-tenofovir; 5.9, 4.9 to 6.9; p = 0.98). Patients on tenofovir had significantly reduced urinary calcium excretion (median 3.01 mmol/24 hours) compared to non-tenofovir users (4.56; p,0.0001). Stratification of the analysis by age and ethnicity revealed that non-white men but not women, on tenofovir had higher PTH levels than non-white men not on tenofovir (mean difference 3.1 pmol/L, 95% CI 5.3 to 0.9; p = 0.007). Those patients with optimal 25-hydroxyvitamin D (.75 nmol/L) on tenofovir had higher 1,25-dihydroxyvitamin D [1,25(OH)2D] (median 48 pg/mL versus 31; p = 0.012), fractional excretion of phosphate (median 26.1%, versus 14.6;p = 0.025) and lower serum phosphate (median 0.79 mmol/L versus 1.02; p = 0.040) than those not taking tenofovir. Conclusions: The effects of tenofovir on PTH levels were modified by sex and ethnicity in this cohort. Vitamin D status also modified the effects of tenofovir on serum concentrations of 1,25(OH)2D and phosphate.
Resumo:
Objectives In non-alcoholic fatty liver disease (NAFLD), hepatic steatosis is intricately linked with a number of metabolic alterations. We studied substrate utilisation in NAFLD during basal, insulin-stimulated and exercise conditions, and correlated these outcomes with disease severity. Methods 20 patients with NAFLD (mean±SD body mass index (BMI) 34.1±6.7 kg/m2) and 15 healthy controls (BMI 23.4±2.7 kg/m2) were assessed. Respiratory quotient (RQ), whole-body fat (Fatox) and carbohydrate (CHOox) oxidation rates were determined by indirect calorimetry in three conditions: basal (resting and fasted), insulin-stimulated (hyperinsulinaemic–euglycaemic clamp) and exercise (cycling at an intensity to elicit maximal Fatox). Severity of disease and steatosis were determined by liver histology, hepatic Fatox from plasma β-hydroxybutyrate concentrations, aerobic fitness expressed as , and visceral adipose tissue (VAT) measured by computed tomography. Results Within the overweight/obese NAFLD cohort, basal RQ correlated positively with steatosis (r=0.57, p=0.01) and was higher (indicating smaller contribution of Fatox to energy expenditure) in patients with NAFLD activity score (NAS) ≥5 vs <5 (p=0.008). Both results were independent of VAT, % body fat and BMI. Compared with the lean control group, patients with NAFLD had lower basal whole-body Fatox (1.2±0.3 vs 1.5±0.4 mg/kgFFM/min, p=0.024) and lower basal hepatic Fatox (ie, β-hydroxybutyrate, p=0.004). During exercise, they achieved lower maximal Fatox (2.5±1.4 vs. 5.8±3.7 mg/kgFFM/min, p=0.002) and lower (p<0.001) than controls. Fatox during exercise was not associated with disease severity (p=0.79). Conclusions Overweight/obese patients with NAFLD had reduced hepatic Fatox and reduced whole-body Fatox under basal and exercise conditions. There was an inverse relationship between ability to oxidise fat in basal conditions and histological features of NAFLD including severity of steatosis and NAS