225 resultados para Neuro-signalling
Resumo:
Immune reactions play important roles in determining the in vivo fate of bone substitute materials, either in new bone formation or inflammatory fibrous tissue encapsulation. The paradigm for the development of bone substitute materials has been shifted from inert to immunomodulatory materials, emphasizing the importance of immune cells in the material evaluation. Macrophages, the major effector cells in the immune reaction to implants, are indispensable for osteogenesis and their heterogeneity and plasticity render macrophages a primer target for immune system modulation. However, there are very few reports about the effects of macrophages on biomaterial-regulated osteogenesis. In this study, we used b-tricalcium phosphate (b-TCP) as a model biomaterial to investigate the role of macrophages on the material stimulated osteogenesis. The macrophage phenotype switched to M2 extreme in response to b-TCP extracts, which was related to the activation of calcium-sensing receptor (CaSR) pathway. Bone morphogenetic protein 2 (BMP2) was also significantly upregulated by the b-TCP stimulation, indicating that macrophage may participate in the b-TCP stimulated osteogenesis. Interestingly, when macrophageconditioned b-TCP extracts were applied to bone marrow mesenchymal stem cells (BMSCs), the osteogenic differentiation of BMSCs was significantly enhanced, indicating the important role of macrophages in biomaterial-induced osteogenesis. These findings provided valuable insights into the mechanism of material-stimulated osteogenesis, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of bone substitute materials.
Resumo:
The effect of nutrient availability on the acute molecular responses following repeated sprint exercise is unknown. The aim of this study was to determine skeletal muscle cellular and protein synthetic responses following repeated sprint exercise with nutrient provision. Eight healthy young male subjects undertook two sprint cycling sessions (10 × 6 s, 0.75 N m torque kg -1, 54 s recovery) with either pre-exercise nutrient (24 g whey, 4.8 g leucine, 50 g maltodextrin) or non-caloric placebo ingestion. Muscle biopsies were taken from vastus lateralis at rest, and after 15 and 240 min post-exercise recovery to determine muscle cell signalling responses and protein synthesis by primed constant infusion of L-[ring- 13C 6] phenylalanine. Peak and mean power outputs were similar between nutrient and placebo trials. Post-exercise myofibrillar protein synthetic rate was greater with nutrient ingestion compared with placebo ( ? 48%, P<0.05) but the rate of mitochondrial protein synthesis was similar between treatments. The increased myofibrillar protein synthesis following sprints with nutrient ingestion was associated with coordinated increases in Akt-mTOR-S6KrpS6 phosphorylation 15 min post-exercise (?200-600%, P<0.05), while there was no effect on these signalling molecules when exercise was undertaken in the fasted state. For the first time we report a beneficial effect of nutrient provision on anabolic signalling and muscle myofibrillar protein synthesis following repeated sprint exercise. Ingestion of protein/carbohydrate in close proximity to high-intensity sprint exercise provides an environment that increases cell signalling and protein synthesis.
Resumo:
Resistance training results in skeletal muscle hypertrophy, but the molecular signalling mechanisms responsible for this altered phenotype are incompletely understood. We used a resistance training (RT) protocol consisting of three sessions [day 1 (d1), day 3 (d3), day 5 (d5)] separated by 48 h recovery (squat exercise, 4 sets × 10 repetitions, 3 min recovery) to determine early signalling responses to RT in rodent skeletal muscle. Six animals per group were killed 3 h after each resistance training session and 24 and 48 h after the last training session (d5). There was a robust increase in TNF? protein expression, and IKKSer180/181 and p38MAPK Thr180/Tyr182 phosphorylation on d1 (P < 0.05), which abated with subsequent RT, returning to control levels by d5 for TNF? and IKK Ser180/181. There was a trend for a decrease in MuRF-1 protein expression, 48 h following d5 of training (P = 0.08). Notably, muscle myofibrillar protein concentration was elevated compared to control 24 and 48 h following RT (P < 0.05). AktSer473 and mTORSer2448 phosphorylation were unchanged throughout RT. Phosphorylation of p70S6k Thr389 increased 3 h post-exercise on d1, d3 and d5 (P < 0.05), whilst phosphorylation of S6Ser235/236 increased on d1 and d3 (P < 0.05). Our results show a rapid attenuation of inflammatory signalling with repeated bouts of resistance exercise, concomitant with summation in translation initiation signalling in skeletal muscle. Indeed, the cumulative effect of these signalling events was associated with myofibrillar protein accretion, which likely contributes to the early adaptations in response to resistance training overload in the skeletal muscle.
Resumo:
Background: Charcot Neuro-Arthropathy (CN) is one of the more devastating complications of diabetes. To the best of the authors' knowledge, it appears that no clinical tools based on a systematic review of existing literature have been developed to manage acute CN. Thus, the aim of this paper was to systematically review existing literature and develop an evidence-based clinical pathway for the assessment, diagnosis and management of acute CN in patients with diabetes. Methods: Electronic databases (Medline, PubMed, CINAHL, Embase and Cochrane Library), reference lists, and relevant key websites were systematically searched for literature discussing the assessment, diagnosis and/or management of acute CN published between 2002-2012. At least two independent investigators then quality rated and graded the evidence of each included paper. Consistent recommendations emanating from the included papers were then fashioned in a clinical pathway. Results: The systematic search identified 267 manuscripts, of which 117 (44%) met the inclusion criteria for this study. Most manuscripts discussing the assessment, diagnosis and/or management of acute CN constituted level IV (case series) or EO (expert opinion) evidence. The included literature was used to develop an evidence-based clinical pathway for the assessment, investigations, diagnosis and management of acute CN. Conclusions: This research has assisted in developing a comprehensive, evidence-based clinical pathway to promote consistent and optimal practice in the assessment, diagnosis and management of acute CN. The pathway aims to support health professionals in making early diagnosis and providing appropriate immediate management of acute CN, ultimately reducing its associated complications such as amputations and hospitalisations.
Resumo:
BACKGROUND: The objective of this study was to determine whether it is possible to predict driving safety in individuals with homonymous hemianopia or quadrantanopia based upon a clinical review of neuro-images that are routinely available in clinical practice. METHODS: Two experienced neuro-ophthalmologists viewed a summary report of the CT/MRI scans of 16 participants with homonymous hemianopic or quadrantanopic field defects which provided information regarding the site and extent of the lesion and made predictions regarding whether they would be safe/unsafe to drive. Driving safety was defined using two independent measures: (1) The potential for safe driving was defined based upon whether the participant was rated as having the potential for safe driving, determined through a standardized on-road driving assessment by a certified driving rehabilitation specialist conducted just prior and (2) state recorded motor vehicle crashes (all crashes and at-fault). Driving safety was independently defined at the time of the study by state recorded motor vehicle crashes (all crashes and at-fault) recorded over the previous 5 years, as well as whether the participant was rated as having the potential for safe driving, determined through a standardized on-road driving assessment by a certified driving rehabilitation specialist. RESULTS: The ability to predict driving safety was highly variable regardless of the driving outcome measure, ranging from 31% to 63% (kappa levels ranged from -0.29 to 0.04). The level of agreement between the neuro-ophthalmologists was also only fair (kappa =0.28). CONCLUSIONS: The findings suggest that clinical evaluation of summary reports currently available neuro-images by neuro-ophthalmologists is not predictive of driving safety. Future research should be directed at identifying and/or developing alternative tests or strategies to better enable clinicians to make these predictions.
Resumo:
Ramp signalling is an access control for motorways, in which a traffic signal is placed at on-ramps to regulate the rate of vehicles entering the motorway and thus to preserve the motorway capacity. In general, ramp signalling algorithms fall into two categories: local control and coordinated control by their effective scope. Coordinated ramp signalling strategies make use of measurements from the entire motorway network to operate individual ramp signals for the optimal performances at the network level. This study proposes a multi-hierarchical strategy for coordinated ramp signalling. The strategy is structured in two layers. At the higher layer with a longer update interval, coordination group is assembled and disassembled based on the location of high-risk breakdown flow. At the lower layer with a shorter update interval, individual ramps are hired to serve the coordination and are also released based on the prevailing congestion level on the ramp. This strategy is modelled and applied to the northbound Pacific Motorway micro-simulation platform (AIMSUN). The simulation results show an effective congestion mitigation of the proposed strategy.
Resumo:
Background: Cancer metastasis is the main contributor to breast cancer fatalities as women with the metastatic disease have poorer survival outcomes than women with localised breast cancers. There is an urgent need to develop appropriate prognostic methods to stratify patients based on the propensities of their cancers to metastasise. The insulin-like growth factor (IGF)-I:IGF binding protein (IGFBP):vitronectin complexes have been shown to stimulate changes in gene expression favouring increased breast cancer cell survival and a migratory phenotype. We therefore investigated the prognostic potential of these IGF- and extracellular matrix (ECM) interaction-induced proteins in the early identification of breast cancers with a propensity to metastasise using patient-derived tissue microarrays. Methods: Semiquantitative immunohistochemistry analyses were performed to compare the extracellular and subcellular distribution of IGF- and ECM-induced signalling proteins among matched normal, primary cancer and metastatic cancer formalin-fixed paraffin-embedded breast tissue samples. Results: The IGF- and ECM-induced signalling proteins were differentially expressed between subcellular and extracellular localisations. Vitronectin and IGFBP-5 immunoreactivity was lower while β1 integrin immunoreactivity was higher in the stroma surrounding metastatic cancer tissues, as compared to normal breast and primary cancer stromal tissues. Similarly, immunoreactive stratifin was found to be increased in the stroma of primary as well as metastatic breast tissues. Immunoreactive fibronectin and β1 integrin was found to be highly expressed at the leading edge of tumours. Based on the immunoreactivity it was apparent that the cell signalling proteins AKT1 and ERK1/2 shuffled from the nucleus to the cytoplasm with tumour progression. Conclusion: This is the first in-depth, compartmentalised analysis of the distribution of IGF- and ECM-induced signalling proteins in metastatic breast cancers. This study has provided insights into the changing pattern of cellular localisation and expression of IGF- and ECM-induced signalling proteins in different stages of breast cancer. The differential distribution of these biomarkers could provide important prognostic and predictive indicators that may assist the clinical management of breast disease, namely in the early identification of cancers with a propensity to metastasise, and/or recur following adjuvant therapy.
Resumo:
This project highlights the important role of cell signalling pathway during tooth regeneration. Biomaterials can be designed to activate relevant cell signals for the purpose of dental repair and tooth regeneration. Based on the results in the present project, strategies directly targeting cell signalling pathway may provide new approaches for periodontal regenerative tissue engineering.
Resumo:
Oncogenic mutations in BRAF are common in melanoma and drive constitutive activation of the MEK/ERK pathway. To elucidate the transcriptional events downstream of V600EBRAF/MEK signalling we performed gene expression profiling of A375 melanoma cells treated with potent and selective inhibitors of V600EBRAF and MEK (PLX4720 and PD184352 respectively). Using a stringent Bayesian approach, we identified 69 transcripts that appear to be direct transcriptional targets of this pathway and whose expression changed after 6 h of pathway inhibition. We also identified several additional genes whose expression changed after 24 h of pathway inhibition and which are likely to be indirect transcriptional targets of the pathway. Several of these were confirmed by demonstrating their expression to be similarly regulated when BRAF was depleted using RNA interference, and by using qRT-PCR in other BRAF mutated melanoma lines. Many of these genes are transcription factors and feedback inhibitors of the ERK pathway and are also regulated by MEK signalling in NRAS mutant cells. This study provides a basis for understanding the molecular processes that are regulated by V600EBRAF/MEK signalling in melanoma cells.
Resumo:
This paper presents a low-bandwidth multi-robot communication system designed to serve as a backup communication channel in the event a robot suffers a network device fault. While much research has been performed in the area of distributing network communication across multiple robots within a system, individual robots are still susceptible to hardware failure. In the past, such robots would simply be removed from service, and their tasks re-allocated to other members. However, there are times when a faulty robot might be crucial to a mission, or be able to contribute in a less communication intensive area. By allowing robots to encode and decode messages into unique sequences of DTMF symbols, called words, our system is able to facilitate continued low-bandwidth communication between robots without access to network communication. Our results have shown that the system is capable of permitting robots to negotiate task initiation and termination, and is flexible enough to permit a pair of robots to perform a simple turn taking task.
Resumo:
The biological impact of Rho depends critically on the precise subcellular localization of its active, GTP-loaded form. This can potentially be determined by the balance between molecules that promote nucleotide exchange or GTP hydrolysis. However, how these activities may be coordinated is poorly understood. We now report a molecular pathway that achieves exactly this coordination at the epithelial zonula adherens. We identify an extramitotic activity of the centralspindlin complex, better understood as a cytokinetic regulator, which localizes to the interphase zonula adherens by interacting with the cadherin-associated protein, α-catenin. Centralspindlin recruits the RhoGEF, ECT2, to activate Rho and support junctional integrity through myosin IIA. Centralspindlin also inhibits the junctional localization of p190 B RhoGAP, which can inactivate Rho. Thus, a conserved molecular ensemble that governs Rho activation during cytokinesis is used in interphase cells to control the Rho GTPase cycle at the zonula adherens
Resumo:
We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 d⋅wk–1), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P<0.05). Isokinetic work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P<0.05) but not the CWI group. In another study, nine active men performed a bout of single-leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10−30%) and paired box protein (Pax7)(20−50%) increased 24–48 h after exercise with ACT. The number of NCAM+ satellitecells increased 48 h after exercise with CWI. NCAM+- and Pax7+-positivesatellite cell numbers were greater after ACT than after CWI (P<0.05). Phosphorylation of p70S6 kinaseThr421/Ser424 increased after exercise in both conditions but was greater after ACT (P<0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long-term training gains in muscle strength and hypertrophy. The use of CWI as a regular post-exercise recovery strategy should be reconsidered.