624 resultados para Muti-Modal Biometrics, User Authentication, Fingerprint Recognition, Palm Print Recognition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gait energy images (GEIs) and its variants form the basis of many recent appearance-based gait recognition systems. The GEI combines good recognition performance with a simple implementation, though it suffers problems inherent to appearance-based approaches, such as being highly view dependent. In this paper, we extend the concept of the GEI to 3D, to create what we call the gait energy volume, or GEV. A basic GEV implementation is tested on the CMU MoBo database, showing improvements over both the GEI baseline and a fused multi-view GEI approach. We also demonstrate the efficacy of this approach on partial volume reconstructions created from frontal depth images, which can be more practically acquired, for example, in biometric portals implemented with stereo cameras, or other depth acquisition systems. Experiments on frontal depth images are evaluated on an in-house developed database captured using the Microsoft Kinect, and demonstrate the validity of the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discovering proper search intents is a vi- tal process to return desired results. It is constantly a hot research topic regarding information retrieval in recent years. Existing methods are mainly limited by utilizing context-based mining, query expansion, and user profiling techniques, which are still suffering from the issue of ambiguity in search queries. In this pa- per, we introduce a novel ontology-based approach in terms of a world knowledge base in order to construct personalized ontologies for identifying adequate con- cept levels for matching user search intents. An iter- ative mining algorithm is designed for evaluating po- tential intents level by level until meeting the best re- sult. The propose-to-attempt approach is evaluated in a large volume RCV1 data set, and experimental results indicate a distinct improvement on top precision after compared with baseline models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Key establishment is a crucial cryptographic primitive for building secure communication channels between two parties in a network. It has been studied extensively in theory and widely deployed in practice. In the research literature a typical protocol in the public-key setting aims for key secrecy and mutual authentication. However, there are many important practical scenarios where mutual authentication is undesirable, such as in anonymity networks like Tor, or is difficult to achieve due to insufficient public-key infrastructure at the user level, as is the case on the Internet today. In this work we are concerned with the scenario where two parties establish a private shared session key, but only one party authenticates to the other; in fact, the unauthenticated party may wish to have strong anonymity guarantees. We present a desirable set of security, authentication, and anonymity goals for this setting and develop a model which captures these properties. Our approach allows for clients to choose among different levels of authentication. We also describe an attack on a previous protocol of Øverlier and Syverson, and present a new, efficient key exchange protocol that provides one-way authentication and anonymity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low resolution of images has been one of the major limitations in recognising humans from a distance using their biometric traits, such as face and iris. Superresolution has been employed to improve the resolution and the recognition performance simultaneously, however the majority of techniques employed operate in the pixel domain, such that the biometric feature vectors are extracted from a super-resolved input image. Feature-domain superresolution has been proposed for face and iris, and is shown to further improve recognition performance by capitalising on direct super-resolving the features which are used for recognition. However, current feature-domain superresolution approaches are limited to simple linear features such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), which are not the most discriminant features for biometrics. Gabor-based features have been shown to be one of the most discriminant features for biometrics including face and iris. This paper proposes a framework to conduct super-resolution in the non-linear Gabor feature domain to further improve the recognition performance of biometric systems. Experiments have confirmed the validity of the proposed approach, demonstrating superior performance to existing linear approaches for both face and iris biometrics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase of online services, such as eBanks, WebMails, in which users are verified by a username and password, is increasingly exploited by Identity Theft procedures. Identity Theft is a fraud, in which someone pretends to be someone else is order to steal money or get other benefits. To overcome the problem of Identity Theft an additional security layer is required. Within the last decades the option of verifying users based on their keystroke dynamics was proposed during login verification. Thus, the imposter has to be able to type in a similar way to the real user in addition to having the username and password. However, verifying users upon login is not enough, since a logged station/mobile is vulnerable for imposters when the user leaves her machine. Thus, verifying users continuously based on their activities is required. Within the last decade there is a growing interest and use of biometrics tools, however, these are often costly and require additional hardware. Behavioral biometrics, in which users are verified, based on their keyboard and mouse activities, present potentially a good solution. In this paper we discuss the problem of Identity Theft and propose behavioral biometrics as a solution. We survey existing studies and list the challenges and propose solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing use of computerized systems in our daily lives creates new adversarial opportunities for which complex mechanisms are exploited to mend the rapid development of new attacks. Behavioral Biometrics appear as one of the promising response to these attacks. But it is a relatively new research area, specific frameworks for evaluation and development of behavioral biometrics solutions could not be found yet. In this paper we present a conception of a generic framework and runtime environment which will enable researchers to develop, evaluate and compare their behavioral biometrics solutions with repeatable experiments under the same conditions with the same data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Driven by the rapid development of ubiquitous and pervasive computing, personalized services and applications are deployed to support our lives. Accordingly, the number of interfaces and devices (smartphone, tablet computer, etc.) provided to access and consume these services is growing continuously. To simplify the complexity of managing many accounts with different credentials, Single Sign-On (SSO) solutions have been introduced. However, a single password for many accounts represents a single-point-of-failure. Furthermore, once initiated SSO session is a high potential risk when the working station is left unlocked and unattended. In this paper, we present a conception of a Persistent Single Sign-On (PSSO) for ubiquitous home environments by involving the capabilities of Behavioral Biometrics to check the identity of the user continuously in an unobtrusive manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internet services are important part of daily activities for most of us. These services come with sophisticated authentication requirements which may not be handled by average Internet users. The management of secure passwords for example creates an extra overhead which is often neglected due to usability reasons. Furthermore, password-based approaches are applicable only for initial logins and do not protect against unlocked workstation attacks. In this paper, we provide a non-intrusive identity verification scheme based on behavior biometrics where keystroke dynamics based-on free-text is used continuously for verifying the identity of a user in real-time. We improved existing keystroke dynamics based verification schemes in four aspects. First, we improve the scalability where we use a constant number of users instead of whole user space to verify the identity of target user. Second, we provide an adaptive user model which enables our solution to take the change of user behavior into consideration in verification decision. Next, we identify a new distance measure which enables us to verify identity of a user with shorter text. Fourth, we decrease the number of false results. Our solution is evaluated on a data set which we have collected from users while they were interacting with their mail-boxes during their daily activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. In recent years, sparse representation based classification(SRC) has received much attention in face recognition with multipletraining samples of each subject. However, it cannot be easily applied toa recognition task with insufficient training samples under uncontrolledenvironments. On the other hand, cohort normalization, as a way of mea-suring the degradation effect under challenging environments in relationto a pool of cohort samples, has been widely used in the area of biometricauthentication. In this paper, for the first time, we introduce cohort nor-malization to SRC-based face recognition with insufficient training sam-ples. Specifically, a user-specific cohort set is selected to normalize theraw residual, which is obtained from comparing the test sample with itssparse representations corresponding to the gallery subject, using poly-nomial regression. Experimental results on AR and FERET databases show that cohort normalization can bring SRC much robustness against various forms of degradation factors for undersampled face recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traffic congestion has a significant impact on the economy and environment. Encouraging the use of multimodal transport (public transport, bicycle, park’n’ride, etc.) has been identified by traffic operators as a good strategy to tackle congestion issues and its detrimental environmental impacts. A multi-modal and multi-objective trip planner provides users with various multi-modal options optimised on objectives that they prefer (cheapest, fastest, safest, etc) and has a potential to reduce congestion on both a temporal and spatial scale. The computation of multi-modal and multi-objective trips is a complicated mathematical problem, as it must integrate and utilize a diverse range of large data sets, including both road network information and public transport schedules, as well as optimising for a number of competing objectives, where fully optimising for one objective, such as travel time, can adversely affect other objectives, such as cost. The relationship between these objectives can also be quite subjective, as their priorities will vary from user to user. This paper will first outline the various data requirements and formats that are needed for the multi-modal multi-objective trip planner to operate, including static information about the physical infrastructure within Brisbane as well as real-time and historical data to predict traffic flow on the road network and the status of public transport. It will then present information on the graph data structures representing the road and public transport networks within Brisbane that are used in the trip planner to calculate optimal routes. This will allow for an investigation into the various shortest path algorithms that have been researched over the last few decades, and provide a foundation for the construction of the Multi-modal Multi-objective Trip Planner by the development of innovative new algorithms that can operate the large diverse data sets and competing objectives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CubIT is a multi-user, large-scale presentation and collaboration framework installed at the Queensland University of Technology’s (QUT) Cube facility, an interactive facility made up 48 multi-touch screens and very large projected display screens. CubIT was built to make the Cube facility accessible to QUT’s academic and student population. The system allows users to upload, interact with and share media content on the Cube’s very large display surfaces. CubIT implements a unique combination of features including RFID authentication, content management through multiple interfaces, multi-user shared workspace support, drag and drop upload and sharing, dynamic state control between different parts of the system and execution and synchronisation of the system across multiple computing nodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fundamental part of many authentication protocols which authenticate a party to a human involves the human recognizing or otherwise processing a message received from the party. Examples include typical implementations of Verified by Visa in which a message, previously stored by the human at a bank, is sent by the bank to the human to authenticate the bank to the human; or the expectation that humans will recognize or verify an extended validation certificate in a HTTPS context. This paper presents general definitions and building blocks for the modelling and analysis of human recognition in authentication protocols, allowing the creation of proofs for protocols which include humans. We cover both generalized trawling and human-specific targeted attacks. As examples of the range of uses of our construction, we use the model presented in this paper to prove the security of a mutual authentication login protocol and a human-assisted device pairing protocol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, the Web 2.0 has provided considerable facilities for people to create, share and exchange information and ideas. Upon this, the user generated content, such as reviews, has exploded. Such data provide a rich source to exploit in order to identify the information associated with specific reviewed items. Opinion mining has been widely used to identify the significant features of items (e.g., cameras) based upon user reviews. Feature extraction is the most critical step to identify useful information from texts. Most existing approaches only find individual features about a product without revealing the structural relationships between the features which usually exist. In this paper, we propose an approach to extract features and feature relationships, represented as a tree structure called feature taxonomy, based on frequent patterns and associations between patterns derived from user reviews. The generated feature taxonomy profiles the product at multiple levels and provides more detailed information about the product. Our experiment results based on some popularly used review datasets show that our proposed approach is able to capture the product features and relations effectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fusion techniques can be used in biometrics to achieve higher accuracy. When biometric systems are in operation and the threat level changes, controlling the trade-off between detection error rates can reduce the impact of an attack. In a fused system, varying a single threshold does not allow this to be achieved, but systematic adjustment of a set of parameters does. In this paper, fused decisions from a multi-part, multi-sample sequential architecture are investigated for that purpose in an iris recognition system. A specific implementation of the multi-part architecture is proposed and the effect of the number of parts and samples in the resultant detection error rate is analysed. The effectiveness of the proposed architecture is then evaluated under two specific cases of obfuscation attack: miosis and mydriasis. Results show that robustness to such obfuscation attacks is achieved, since lower error rates than in the case of the non-fused base system are obtained.