120 resultados para Mung bean -- Genetics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the first successful Agrobacterium-mediated transformation of Australian elite rice cultivars, Jarrah and Amaroo, using binary vectors with our improved promoters and selectable markers. Calli derived from mature embryos were used as target tissues. The binary vectors contained hph (encoding hygromycin resistance) or bar (encoding herbicide resistance) as the selectable marker gene and uidA (gus) or sgfpS65T as the reporter gene driven by different promoters. Use of Agrobacterium strain AGL1 carrying derivatives of an improved binary vector pWBVec8, wherein the CaMV35S driven hph gene is interrupted by the castor bean catalase 1 intron, produced a 4-fold higher number of independent transgenic lines compared to that produced with the use of strain EHA101 carrying the binary vector pIG121-Hm wherein the CaMV35S driven hph is intronless. The Ubiquitin promoter produced 30-fold higher β-glucuronidase (GUS) activity (derivatives of binary vector pWBVec8) in transgenic plants than the CaMV35S promoter (pIG121-Hm). The two modified SCSV promoters produced GUS activity comparable to that produced by the Ubiquitin promoter. Progeny analysis (R1) for hygromycin resistance and GUS activity with selected lines showed both Mendelian and non-Mendelian segregation. Lines showing very high levels of GUS activity in T0 showed a reduced level of GUS activity in their T1 progeny, while lines with moderate levels of GUS activity showed increased levels in T1 progeny. Stable heritable green fluorescent protein (GFP) expression was also observed in few transgenic plants produced with the binary vector pTO134 which had the CaMV35S promoter-driven selectable marker gene bar and a modified CaMV35S promoter-driven reporter gene sgfpS65T.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In binary vectors, the antibiotic resistance gene used for selection of transformed plant cells is also usually expressed in the transforming Agrobacterium cells. This expression gives the bacterium antibiotic resistance, an unnecessary advantage on selective medium containing the antibiotic. Insertion of a castor bean catalase-1 (CAT-1) gene intron or a Parasponia andersonii haemoglobin gene intron into the coding region of the selectable marker gene, hph, completely abolished the expression of the gene in Agrobacterium, rendering it susceptible to hygromycin B. Use of these modified binary vectors minimized the overgrowth of Agrobacterium during plant transformation. Both of the introns were correctly spliced in plant cells and significantly enhanced hph gene expression in transformed rice tissue. The presence of these introns in the hph coding sequence not only maintained the selection efficiency of the hph gene, but with the CAT-1 intron also substantially increased the frequency of rice transformation. Transgenic lines with an intron-hph gene generally contained fewer gene copies and produced substantially more mRNA of the predicted size. Our results also indicate that transgenic plants with many copies of the transgene were more likely to show gene silencing than plants with 1-3 copies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shared nature of genetic information presents new challenges for legal understandings of the self. Within traditional legal discourses the individual is conceptualised as separate and autonomous. In contrast, the genetic individual is understood as inherently relational. This paper analyses the transformation of our understandings of the personal. The transformative processes are assessed through discussion of the changing meanings of privacy in the context of genetic information within families; changing views over access to information about biological parentage by children conceived through assisted reproductive technology; preimplantation genetic diagnosis and the changing context of reproductive decisionmaking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern genetic research holds out the promise of a bold new future in which humanity has identified and conquered the genetic roots of many diseases. Genetic science also promises to shed light on who we are, what it is that makes us tick, what it is that makes us the way we are — in short, what it is that makes us human. Yet while genetics are a potential saviour (saving us from disease), it also appears as a threat that at the extremes appears to be the stuff of our worst nightmares, such as the prospect, probably more imagined than real, of rows of cloned individuals. The new genetics hold out the promise that through genetics we will be able to determine what we are, a promise that is simultaneously appealing and terrifying. This chapter discusses the cloning of people and parts, the law’s response to cloning, genetics and diversity, a framework for law reform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent developments in genetic science will potentially have a significant impact on reproductive decision-making by adding to the list of conditions which can be diagnosed through prenatal diagnosis. This article analyses the jurisdictional variations that exist in Australian abortion laws and examines the extent to which Australian abortion laws specifically provide for termination of pregnancy on the grounds of fetal disability. The article also examines the potential impact of pre-implantation genetic diagnosis on reproductive decision-making and considers the meaning of reproductive autonomy in the context of the new genetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Posttraumatic stress disorder (PTSD) is a complex syndrome that occurs following exposure to a potentially life threatening traumatic event. This review summarises the literature on the genetics of PTSD including gene–environment interactions (GxE), epigenetics and genetics of treatment response. Numerous genes have been shown to be associated with PTSD using candidate gene approaches. Genome-wide association studies have been limited due to the large sample size required to reach statistical power. Studies have shown that GxE interactions are important for PTSD susceptibility. Epigenetics plays an important role in PTSD susceptibility and some of the most promising studies show stress and child abuse trigger epigenetic changes. Much of the molecular genetics of PTSD remains to be elucidated. However, it is clear that identifying genetic markers and environmental triggers has the potential to advance early PTSD diagnosis and therapeutic interventions and ultimately ease the personal and financial burden of this debilitating disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water mouse, Xeromys myoides, is currently recognised as a vulnerable species in Australia, inhabiting a small number of distinct and isolated coastal regions of Queensland and the Northern Territory. An examination of the evolutionary history and contemporary influences shaping the genetic structure of this species is required to make informed conservation management decisions. Here, we report the first analysis undertaken on the phylogeography and population genetics of the water mouse across its mainland Australian distribution. Genetic diversity was assessed at two mitochondrial DNA (Cytochrome b, 1000 bp; D-loop, 400 bp) and eight microsatellite DNA loci. Very low genetic diversity was found, indicating that water mice underwent a recent expansion throughout their Australian range and constitute a single evolutionarily significant unit. Microsatellite analyses revealed that the highest genetic diversity was found in the Mackay region of central Queensland; population substructure was also identified, suggesting that local populations may be isolated in this region. Conversely, genetic diversity in the Coomera region of south-east Queensland was very low and the population in this region has experienced a significant genetic bottleneck. These results have significant implications for future management, particularly in terms of augmenting populations through translocations or reintroducing water mice in areas where they have gone extinct.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The O-specific polysaccharide (OPS) is a variable constituent of the lipopolysaccharide of Gram-negative bacteria. The polymorphic nature of OPSs within a species is usually first defined serologically, and the current serotyping scheme for Yersinia pseudotuberculosis consists of 21 O serotypes of which 15 have been characterized genetically and structurally. Here, we present the structure and DNA sequence of Y. pseudotuberculosis O:10 OPS. The O unit consists of one residue each of d-galactopyranose, N-acetyl-d-galactosamine (2-amino-2-deoxy-d-galactopyranose) and d-glucopyranose in the backbone, with two colitose (3,6-dideoxy-l-xylo-hexopyranose) side-branch residues. This structure is very similar to that shared by Escherichia coli O111 and Salmonella enterica O35. The gene cluster sequences of these serotypes, however, have only low levels of similarity to that of Y. pseudotuberculosis O:10, although there is significant conservation of gene order. Within Y. pseudotuberculosis, the O10 structure is most closely related to the O:6 and O:7 structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The venture, 23andMe Inc., raises a host of issues in respect of patent law, policy, and practice in respect of lifestyle genetics and personalised medicine. The company observes: ‘We recognize that the availability of personal genetic information raises important issues at the nexus of ethics, law, and public policy’. 23andMe Inc. has tested the boundaries of patent law, with its patent applications, which cut across information technology, medicine, and biotechnology. The company’s research raises fundamental issues about patentability, especially in light of the litigation in Bilski v. Kappos, Mayo Collaborative Services v. Prometheus Laboratories Inc. and Association for Molecular Pathology v. United States Patent and Trademark Office and Myriad Genetics Inc. There has been much debate and controversy over 23andMe Inc. filing patent applications – particularly in respect of its granted patent on ‘Polymorphisms associated with Parkinson’s Disease’. The direct-to-consumer marketing of genetic testing by 23andMe Inc. has also raised important questions of bioethics and human rights. It is queried whether the terms of service for 23andMe Inc. provide adequate recognition of the concepts of informed consent and benefit-sharing, especially in light of litigation in this area in the United States. Given the patent thickets surrounding genetic testing, the case study of 23andMe Inc. also highlights questions about patent infringement and patent exceptions. The future reform of patent law, policy, and practice needs to take into account new developments in lifestyle genetics and personalised medicine – as exemplified by 23andMe Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article considers the debate over patent law, informed consent, and benefit-sharing in the context of biomedical research in respect of Indigenous communities. In particular, it focuses upon three key controversies over large-scale biology projects, involving Indigenous populations. These case studies are representative of the tensions between research organisations, Indigenous communities, and funding agencies. Section two considers the aims and origins of the Human Genome Diversity Project, and criticisms levelled against the venture by Indigenous peak bodies and anti-biotechnology groups, such as the Rural Advancement Foundation International. It examines the ways in which the United Nations Educational, Scientific, and Cultural Organization (UNESCO) grappled with questions of patent law, informed consent, and benefit sharing in relation to population genetics. Section three focuses upon the ongoing litigation in Tilousi v. Arizona State University, and the Havasupai Tribe v. Arizona State University. In this matter, the Havasupai tribe from the Grand Canyon in the United States brought legal action against the Arizona State University and its researchers for using genetic data for unauthorised purposes - namely, genetic research into schizophrenia, migration, and inbreeding. The litigation raises questions about informed consent, negligence, and larger matters of human rights. Section four explores the legal and ethical issues raised by the Genographic Project. It considers the aims and objectives of the venture, and the criticisms levelled against it by Indigenous communities, and anti-biotechnology groups. It examines the response of the United Nations Permanent Forum on Indigenous Issues to the Genographic Project. It charts the debate over the protection of traditional knowledge in various international fora. The conclusion recommends a number of measures to better regulate large-scale biology projects involving the participation of Indigenous communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic and environmental factors influence brain structure and function profoundly. The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8 ± 1.8 SD years). All 92 twins' 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject's anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions that have a more protracted maturational time-course.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We developed an analysis pipeline enabling population studies of HARDI data, and applied it to map genetic influences on fiber architecture in 90 twin subjects. We applied tensor-driven 3D fluid registration to HARDI, resampling the spherical fiber orientation distribution functions (ODFs) in appropriate Riemannian manifolds, after ODF regularization and sharpening. Fitting structural equation models (SEM) from quantitative genetics, we evaluated genetic influences on the Jensen-Shannon divergence (JSD), a novel measure of fiber spatial coherence, and on the generalized fiber anisotropy (GFA) a measure of fiber integrity. With random-effects regression, we mapped regions where diffusion profiles were highly correlated with subjects' intelligence quotient (IQ). Fiber complexity was predominantly under genetic control, and higher in more highly anisotropic regions; the proportion of genetic versus environmental control varied spatially. Our methods show promise for discovering genes affecting fiber connectivity in the brain.