700 resultados para Multiple scale
Resumo:
In this paper we describe CubIT, a multi-user presentation and collaboration system installed at the Queensland University of Technology’s (QUT) Cube facility. The ‘Cube’ is an interactive visualisation facility made up of five very large-scale interactive multi-panel wall displays, each consisting of up to twelve 55-inch multi-touch screens (48 screens in total) and massive projected display screens situated above the display panels. The paper outlines the unique design challenges, features, implementation and evaluation of CubIT. The system was built to make the Cube facility accessible to QUT’s academic and student population. CubIT enables users to easily upload and share their own media content, and allows multiple users to simultaneously interact with the Cube’s wall displays. The features of CubIT were implemented via three user interfaces, a multi-touch interface working on the wall displays, a mobile phone and tablet application and a web-based content management system. Each of these interfaces plays a different role and offers different interaction mechanisms. Together they support a wide range of collaborative features including multi-user shared workspaces, drag and drop upload and sharing between users, session management and dynamic state control between different parts of the system. The results of our evaluation study showed that CubIT was successfully used for a variety of tasks, and highlighted challenges with regards to user expectations regarding functionality as well as issues arising from public use.
Resumo:
1.Marine ecosystems provide critically important goods and services to society, and hence their accelerated degradation underpins an urgent need to take rapid, ambitious and informed decisions regarding their conservation and management. 2.The capacity, however, to generate the detailed field data required to inform conservation planning at appropriate scales is limited by time and resource consuming methods for collecting and analysing field data at the large scales required. 3.The ‘Catlin Seaview Survey’, described here, introduces a novel framework for large-scale monitoring of coral reefs using high-definition underwater imagery collected using customized underwater vehicles in combination with computer vision and machine learning. This enables quantitative and geo-referenced outputs of coral reef features such as habitat types, benthic composition, and structural complexity (rugosity) to be generated across multiple kilometre-scale transects with a spatial resolution ranging from 2 to 6 m2. 4.The novel application of technology described here has enormous potential to contribute to our understanding of coral reefs and associated impacts by underpinning management decisions with kilometre-scale measurements of reef health. 5.Imagery datasets from an initial survey of 500 km of seascape are freely available through an online tool called the Catlin Global Reef Record. Outputs from the image analysis using the technologies described here will be updated on the online repository as work progresses on each dataset. 6.Case studies illustrate the utility of outputs as well as their potential to link to information from remote sensing. The potential implications of the innovative technologies on marine resource management and conservation are also discussed, along with the accuracy and efficiency of the methodologies deployed.
Resumo:
Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making
Resumo:
Project work can involve multiple people from varying disciplines coming together to solve problems as a group. Large scale interactive displays are presenting new opportunities to support such interactions with interactive and semantically enabled cooperative work tools such as intelligent mind maps. In this paper, we present a novel digital, touch-enabled mind-mapping tool as a first step towards achieving such a vision. This first prototype allows an evaluation of the benefits of a digital environment for a task that would otherwise be performed on paper or flat interactive surfaces. Observations and surveys of 12 participants in 3 groups allowed the formulation of several recommendations for further research into: new methods for capturing text input on touch screens; inclusion of complex structures; multi-user environments and how users make the shift from single- user applications; and how best to navigate large screen real estate in a touch-enabled, co-present multi-user setting.
Resumo:
Alignment-free methods, in which shared properties of sub-sequences (e.g. identity or match length) are extracted and used to compute a distance matrix, have recently been explored for phylogenetic inference. However, the scalability and robustness of these methods to key evolutionary processes remain to be investigated. Here, using simulated sequence sets of various sizes in both nucleotides and amino acids, we systematically assess the accuracy of phylogenetic inference using an alignment-free approach, based on D2 statistics, under different evolutionary scenarios. We find that compared to a multiple sequence alignment approach, D2 methods are more robust against among-site rate heterogeneity, compositional biases, genetic rearrangements and insertions/deletions, but are more sensitive to recent sequence divergence and sequence truncation. Across diverse empirical datasets, the alignment-free methods perform well for sequences sharing low divergence, at greater computation speed. Our findings provide strong evidence for the scalability and the potential use of alignment-free methods in large-scale phylogenomics.
Resumo:
There is an increasing need in biology and clinical medicine to robustly and reliably measure tens-to-hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma, and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and 7 control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to sub-nanogram/mL sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and inter-laboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy isotope labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an inter-laboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality c`ontrol measures, enables sensitive, specific, reproducible and quantitative measurements of proteins and peptides in complex biological matrices such as plasma.
Resumo:
Terrestrial ecosystem productivity is widely accepted to be nutrient limited1. Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP)2,3, the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized4,5,6,7,8. However, the extent to which terrestrial productivity is co-limited by nutrients other than N and P has remained unclear. Here, we report results from a standardized factorial nutrient addition experiment, in which we added N, P and potassium (K) combined with a selection of micronutrients (K+μ), alone or in concert, to 42 grassland sites spanning five continents, and monitored ANPP. Nutrient availability limited productivity at 31 of the 42 grassland sites. And pairwise combinations of N, P, and K+μ co-limited ANPP at 29 of the sites. Nitrogen limitation peaked in cool, high latitude sites. Our findings highlight the importance of less studied nutrients, such as K and micronutrients, for grassland productivity, and point to significant variations in the type and degree of nutrient limitation. We suggest that multiple-nutrient constraints must be considered when assessing the ecosystem-scale consequences of nutrient enrichment.
Resumo:
Moreton Island and several other large siliceous sand dune islands and mainland barrier deposits in SE Queensland represent the distal, onshore component of an extensive Quaternary continental shelf sediment system. This sediment has been transported up to 1000 km along the coast and shelf of SE Australia over multiple glacioeustatic sea-level cycles. Stratigraphic relationships and a preliminary Optically Stimulated Luminance (OSL) chronology for Moreton Island indicate a middle Pleistocene age for the large majority of the deposit. Dune units exposed in the centre of the island and on the east coast have OSL ages that indicate deposition occurred between approximately 540 ka and 350 ka BP, and at around 96±10 ka BP. Much of the southern half of the island has a veneer of much younger sediment, with OSL ages of 0.90±0.11 ka, 1.28±0.16 ka, 5.75±0.53 ka and <0.45 ka BP. The younger deposits were partially derived from the reworking of the upper leached zone of the much older dunes. A large parabolic dune at the northern end of the island, OSL age of 9.90±1.0 ka BP, and palaeosol exposures that extend below present sea level suggest the Pleistocene dunes were sourced from shorelines positioned several to tens of metres lower than, and up to few kilometres seaward of the present shoreline. Given the lower gradient of the inner shelf a few km seaward of the island, it seems likely that periods of intermediate sea level (e.g. ~20 m below present) produced strongly positive onshore sediment budgets and the mobilisation of dunes inland to form much of what now comprises Moreton Island. The new OSL ages and comprehensive OSL chronology for the Cooloola deposit, 100 km north of Moreton Island, indicate that the bulk of the coastal dune deposits in SE Queensland were emplaced between approximately 540 ka BP and prior to the Last Interglacial. This chronostratigraphic information improves our fundamental understanding of long-term sediment transport and accumulation on large-scale continental shelf sediment systems.
Resumo:
Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same region.
Resumo:
Common diseases such as endometriosis (ED), Alzheimer's disease (AD) and multiple sclerosis (MS) account for a significant proportion of the health care burden in many countries. Genome-wide association studies (GWASs) for these diseases have identified a number of individual genetic variants contributing to the risk of those diseases. However, the effect size for most variants is small and collectively the known variants explain only a small proportion of the estimated heritability. We used a linear mixed model to fit all single nucleotide polymorphisms (SNPs) simultaneously, and estimated genetic variances on the liability scale using SNPs from GWASs in unrelated individuals for these three diseases. For each of the three diseases, case and control samples were not all genotyped in the same laboratory. We demonstrate that a careful analysis can obtain robust estimates, but also that insufficient quality control (QC) of SNPs can lead to spurious results and that too stringent QC is likely to remove real genetic signals. Our estimates show that common SNPs on commercially available genotyping chips capture significant variation contributing to liability for all three diseases. The estimated proportion of total variation tagged by all SNPs was 0.26 (SE 0.04) for ED, 0.24 (SE 0.03) for AD and 0.30 (SE 0.03) for MS. Further, we partitioned the genetic variance explained into five categories by a minor allele frequency (MAF), by chromosomes and gene annotation. We provide strong evidence that a substantial proportion of variation in liability is explained by common SNPs, and thereby give insights into the genetic architecture of the diseases.
Resumo:
CONTEXT People meeting diagnostic criteria for anxiety or depressive disorders tend to score high on the personality scale of neuroticism. Studying this personality dimension can give insights into the etiology of these important psychiatric disorders. OBJECTIVES To undertake a comprehensive genome-wide linkage study of neuroticism using large study samples that have been measured multiple times and to compare the results between countries for replication and across time within countries for consistency. DESIGN Genome-wide linkage scan. SETTING Twin individuals and their family members from Australia and the Netherlands. PARTICIPANTS Nineteen thousand six hundred thirty-five sibling pairs completed self-report questionnaires for neuroticism up to 5 times over a period of up to 22 years. Five thousand sixty-nine sibling pairs were genotyped with microsatellite markers. METHODS Nonparametric linkage analyses were conducted in MERLIN-REGRESS for the mean neuroticism scores averaged across time. Additional analyses were conducted for the time-specific measures of neuroticism from each country to investigate consistency of linkage results. RESULTS Three chromosomal regions exceeded empirically derived thresholds for suggestive linkage using mean neuroticism scores: 10p 5 Kosambi cM (cM) (Dutch study sample), 14q 103 cM (Dutch study sample), and 18q 117 cM (combined Australian and Dutch study sample), but only 14q retained significance after correction for multiple testing. These regions all showed evidence for linkage in individual time-specific measures of neuroticism and 1 (18q) showed some evidence for replication between countries. Linkage intervals for these regions all overlap with regions identified in other studies of neuroticism or related traits and/or in studies of anxiety in mice. CONCLUSIONS Our results demonstrate the value of the availability of multiple measures over time and add to the optimism reported in recent reviews for replication of linkage regions for neuroticism. These regions are likely to harbor causal variants for neuroticism and its related psychiatric disorders and can inform prioritization of results from genome-wide association studies.
Resumo:
The family of location and scale mixtures of Gaussians has the ability to generate a number of flexible distributional forms. The family nests as particular cases several important asymmetric distributions like the Generalized Hyperbolic distribution. The Generalized Hyperbolic distribution in turn nests many other well known distributions such as the Normal Inverse Gaussian. In a multivariate setting, an extension of the standard location and scale mixture concept is proposed into a so called multiple scaled framework which has the advantage of allowing different tail and skewness behaviours in each dimension with arbitrary correlation between dimensions. Estimation of the parameters is provided via an EM algorithm and extended to cover the case of mixtures of such multiple scaled distributions for application to clustering. Assessments on simulated and real data confirm the gain in degrees of freedom and flexibility in modelling data of varying tail behaviour and directional shape.