118 resultados para Motion sickness.
Resumo:
The dynamics of droplets exhaled from the respiratory system during coughing or talking is addressed. A mathematical model is presented accounting for the motion of a droplet in conjunction with its evaporation. Droplet evaporation and motion are accounted for under two scenarios: 1) A well mixed droplet and 2) A droplet with inner composition variation. A multiple shells model was implemented to account for internal mass and heat transfer and for concentration and temperature gradients inside the droplet. The trajectories of the droplets are computed for a range of conditions and the spatial distribution and residence times of such droplets are evaluated.
Resumo:
This study examined whether the conspicuity of road workers at night can be enhanced by distributing retroreflective strips across the body to present a pattern of biological motion (biomotion). Twenty visually normal drivers (mean age = 40.3 years) participated in an experiment conducted at two open-road work sites (one suburban and one freeway) at night-time. At each site, four road workers walked in place wearing a standard road worker night vest either (a) alone, (b) with additional retroreflective strips on thighs, (c) with additional retroreflective strips on ankles and knees, or (d) with additional retroreflective strips on eight moveable joints (full biomotion). Participants, seated in stationary vehicles at three different distances (80 m, 160 m, 240 m), rated the relative conspicuity of the four road workers. Road worker conspicuity was maximized by the full biomotion configuration at all distances and at both sites. The addition of ankle and knee markings also provided significant benefits relative to the standard vest alone. The effects of clothing configuration were more evident at the freeway site and at shorter distances. Overall, the full biomotion configuration was ranked to be most conspicuous and the vest least conspicuous. These data provide the first evidence that biomotion effectively enhances conspicuity of road workers at open-road work sites.
Resumo:
Lumia: art/light/motion is an exciting new media exhibition presented by State Library of Queensland in partnership with Queensland-based Kuuki collective artists Priscilla Bracks and Gavin Sade. The exhibition explored contemporary life and encourages thought about the future through an extraordinary collection of hand-crafted and interactive electronic creatures and installations. The beautifully crafted new media artworks in Lumia: art/light/motion combine the bespoke with art and technology to create strange but intriguing objects. Lumia invited audiences to play, learn and then ponder the way we live and the environmental and social implications of our choices.
Resumo:
This paper demonstrates the application of a robust form of pose estimation and scene reconstruction using data from camera images. We demonstrate results that suggest the ability of the algorithm to rival methods of RANSAC based pose estimation polished by bundle adjustment in terms of solution robustness, speed and accuracy, even when given poor initialisations. Our simulated results show the behaviour of the algorithm in a number of novel simulated scenarios reflective of real world cases that show the ability of the algorithm to handle large observation noise and difficult reconstruction scenes. These results have a number of implications for the vision and robotics community, and show that the application of visual motion estimation on robotic platforms in an online fashion is approaching real-world feasibility.
Resumo:
The main focus of this paper is the motion planning problem for a deeply submerged rigid body. The equations of motion are formulated and presented by use of the framework of differential geometry and these equations incorporate external dissipative and restoring forces. We consider a kinematic reduction of the affine connection control system for the rigid body submerged in an ideal fluid, and present an extension of this reduction to the forced affine connection control system for the rigid body submerged in a viscous fluid. The motion planning strategy is based on kinematic motions; the integral curves of rank one kinematic reductions. This method is of particular interest to autonomous underwater vehicles which can not directly control all six degrees of freedom (such as torpedo shaped AUVs) or in case of actuator failure (i.e., under-actuated scenario). A practical example is included to illustrate our technique.
Resumo:
This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles and the rules of the air. It is shown that MSA* finds a cost optimal solution using variable length, angle and velocity trajectory segments. These segments are approximated with a grid based cell sequence that provides an inherent tolerance to uncertainty. Computational efficiency is achieved by using variable successor operators to create a multi-resolution, memory efficient lattice sampling structure. Simulation studies on the UAV flight planning problem show that MSA* meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of vector neighbourhood based A*.
Resumo:
This article investigates virtual reality representations of performance in London’s late sixteenth-century Rose Theatre, a venue that, by means of current technology, can once again challenge perceptions of space, performance, and memory. The VR model of The Rose represents a virtual recreation of this venue in as much detail as possible and attempts to recover graphic demonstrations of the trace memories of the performance modes of the day. The VR model is based on accurate archeological and theatre historical records and is easy to navigate. The introduction of human figures onto The Rose’s stage via motion capture allows us to explore the relationships between space, actor and environment. The combination of venue and actors facilitates a new way of thinking about how the work of early modern playwrights can be stored and recalled. This virtual theatre is thus activated to intersect productively with contemporary studies in performance; as such, our paper provides a perspective on and embodiment of the relation between technology, memory and experience. It is, at its simplest, a useful archiving project for theatrical history, but it is directly relevant to contemporary performance practice as well. Further, it reflects upon how technology and ‘re-enactments’ of sorts mediate the way in which knowledge and experience are transferred, and even what may be considered ‘knowledge.’ Our work provides opportunities to begin addressing what such intermedial confrontations might produce for ‘remembering, experiencing, thinking and imagining.’ We contend that these confrontations will enhance live theatre performance rather than impeding or disrupting contemporary performance practice. Our ‘paper’ is in the form of a video which covers the intellectual contribution while also permitting a demonstration of the interventions we are discussing.
Resumo:
This paper presents a general methodology for learning articulated motions that, despite having non-linear correlations, are cyclical and have a defined pattern of behavior Using conventional algorithms to extract features from images, a Bayesian classifier is applied to cluster and classify features of the moving object. Clusters are then associated in different frames and structure learning algorithms for Bayesian networks are used to recover the structure of the motion. This framework is applied to the human gait analysis and tracking but applications include any coordinated movement such as multi-robots behavior analysis.
Resumo:
This paper investigates virtual reality representations of performance in London’s late sixteenth-century Rose Theatre, a venue that, by means of current technology, can once again challenge perceptions of space, performance, and memory. The VR model of The Rose becomes a Camillo device in that it represents a virtual recreation of this venue in as much detail as possible and attempts to recover graphic demonstrations of the trace memories of the performance modes of the day. The VR model is based on accurate archeological and theatre historical records and is easy to navigate. The introduction of human figures onto The Rose’s stage via motion capture allows us to explore the relationships between space, actor and environment. The combination of venue and actors facilitates a new way of thinking about how the work of early modern playwrights can be stored and recalled. This virtual theatre is thus activated to intersect productively with contemporary studies in performance; as such, our paper provides a perspective on and embodiment of the relation between technology, memory and experience. It is, at its simplest, a useful archiving project for theatrical history, but it is directly relevant to contemporary performance practice as well. Further, it reflects upon how technology and ‘re-enactments’ of sorts mediate the way in which knowledge and experience are transferred, and even what may be considered ‘knowledge.’ Our work provides opportunities to begin addressing what such intermedial confrontations might produce for ‘remembering, experiencing, thinking and imagining.’ We contend that these confrontations will enhance live theatre performance rather than impeding or disrupting contemporary performance practice. This paper intersects with the CFP’s ‘Performing Memory’ and ‘Memory Lab’ themes. Our presentation (which includes a demonstration of the VR model and the motion capture it requires) takes the form of two closely linked papers that share a single abstract. The two papers will be given by two people, one of whom will be physically present in Utrecht, the other participating via Skype.
Resumo:
"How do you film a punch?" This question can be posed by actors, make-up artists, directors and cameramen. Though they can all ask the same question, they are not all seeking the same answer. Within a given domain, based on the roles they play, agents of the domain have different perspectives and they want the answers to their question from their perspective. In this example, an actor wants to know how to act when filming a scene involving a punch. A make-up artist is interested in how to do the make-up of the actor to show bruises that may result from the punch. Likewise, a director wants to know how to direct such a scene and a cameraman is seeking guidance on how best to film such a scene. This role-based difference in perspective is the underpinning of the Loculus framework for information management for the Motion Picture Industry. The Loculus framework exploits the perspective of agent for information extraction and classification within a given domain. The framework uses the positioning of the agent’s role within the domain ontology and its relatedness to other concepts in the ontology to determine the perspective of the agent. Domain ontology had to be developed for the motion picture industry as the domain lacked one. A rule-based relatedness score was developed to calculate the relative relatedness of concepts with the ontology, which were then used in the Loculus system for information exploitation and classification. The evaluation undertaken to date have yielded promising results and have indicated that exploiting perspective can lead to novel methods of information extraction and classifications.
Resumo:
Continuous passive motion (CPM) is currently a part of patient rehabilitation regimens after a variety of orthopedic surgical procedures. While CPM can enhance the joint healing process, the direct effects of CPM on cartilage metabolism remain unknown. Recent in vivo and in vitro observations suggest that mechanical stimuli can regulate articular cartilage metabolism of proteoglycan 4 (PRG4), a putative lubricating and chondroprotective molecule found in synovial fluid and at the articular cartilage surface. ----- ----- Objectives: (1) Determine the topographical variation in intrinsic cartilage PRG4 secretion. (2) Apply a CPM device to whole joints in bioreactors and assess effects of CPM on PRG4 biosynthesis.----- ----- Methods: A bioreactor was developed to apply CPM to bovine stifle joints in vitro. Effects of 24 h of CPM on PRG4 biosynthesis were determined.----- ----- Results: PRG4 secretion rate varied markedly over the joint surface. Rehabilitative joint motion applied in the form of CPM regulated PRG4 biosynthesis, in a manner dependent on the duty cycle of cartilage sliding against opposing tissues. Specifically, in certain regions of the femoral condyle that were continuously or intermittently sliding against meniscus and tibial cartilage during CPM, chondrocyte PRG4 synthesis was higher with CPM than without.----- ----- Conclusions: Rehabilitative joint motion, applied in the form of CPM, stimulates chondrocyte PRG4 metabolism. The stimulation of PRG4 synthesis is one mechanism by which CPM may benefit cartilage and joint health in post-operative rehabilitation. (C) 2006 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Resumo:
This thesis is concerned with the sloshing motion of water in a moonpool. It is a relatively new problem, that is particularly predominant in moonpools with relatively large dimensions. The problem is further complicated by the additional behaviour of vertical oscillation. It is inevitable that large moonpools will be needed as offshore technology advances, therefore making a problem an important one. The research involves two parts, the theoretical and experimental study. The theoretical study consists of idealising the moonpool to a two dimensional system, represented by two surface piercing parallel barriers at a distance 2a apart. The barriers are forced to undergo roll motion which in turn generates waves. These travelling waves are travelling in opposite directions to each other and have the same amplitude and period, and thus can be expressed in terms of a standing wave. This is mathematically achieved by applying the theory of wavemaking, and therefore the wave amplitude at the side wall can be evaluated at near resonant conditions. The experimental study comprises of comparing the results obtained from the tank and moonpool experiments. The rolling motion creates the sloshing waves in both cases, in addition the vertical oscillation in the moonpool is produced by generating waves at one end of the towing tank. Apart from highlighting influencing parameters, the resonant frequencies obtained from these experiments are then compared with the theoretical values. Experiments in demonstrating the effect of increasing damping with the aid of baffles are also conducted. This is an important aspect which is very necessary if operations in launching and retrieving are to be carried out efficiently and safely.
Resumo:
The State Library of Queensland is delighted to present Lumia: art/light/motion, a culmination of many years of collaboration by the Kuuki collective led by Priscilla Bracks and Gavin Sade. This extraordinary exhibition not only showcases the unique talent of these Queenslanders, it also opens up a world of future possibilities while re-presenting the past and present. These contemporary new media installations sit comfortably within the walls of the library as they are the distinctive products of inquisitive and philosophical minds. In a sense the exhibition highlights the longevity and purposefulness of a cultural learning institution, through the non-traditional use of data, information, research and collection interpretation. The exhibition simultaneously articulates one of our key objectives – to progress the state’s digital agenda. Two academic essays have been commissioned for this joint Kuuki and State Library of Queensland publication. The first is by artist and writer Paul Brown, who has specialised in art, science and technology since the late 1960s and in computational and generative art since the mid 1970s. Brown investigates the history of new media, which is celebrating its 60th anniversary, and clearly places Sade and Bracks at the forefront of this genre nationally. The second essay is by arts writer Linda Carroli, who has delved deeply into the thoughts and processes of the artists to bring to light the complex workings of the artists’ minds. The publication also features an interview Carroli conducted with the artists. This exhibition is playful, informative and contemplative. The audience is invited to play, and consequently to ponder the way we live and the environmental and social implications of our choices. The exhibition tempts us to travel deep into the Antarctic, plunge into the Great Barrier Reef, be swamped by an orchestra of crickets, enter the Charmed world and travel back in time to a Victorian parlour where you can interact with a ‘new-world’ lyrebird and consider a brave new world where our only link to the animal world is with robotic representations. In essence this exhibition is about ideas and knowledge and what better institution than the State Library of Queensland to partner such a project?. State Library is committed to preserving culture, exploring new media and creating new content as a lasting legacy of Queensland for all Queenslanders.
Resumo:
This paper discusses the statistical analyses used to derive bridge live loads models for Hong Kong from a 10-year weigh-in-motion (WIM) data. The statistical concepts required and the terminologies adopted in the development of bridge live load models are introduced. This paper includes studies for representative vehicles from the large amount of WIM data in Hong Kong. Different load affecting parameters such as gross vehicle weights, axle weights, axle spacings, average daily number of trucks etc are first analyzed by various stochastic processes in order to obtain the mathematical distributions of these parameters. As a prerequisite to determine accurate bridge design loadings in Hong Kong, this study not only takes advantages of code formulation methods used internationally but also presents a new method for modelling collected WIM data using a statistical approach.