363 resultados para Molecular mechanical modelling
Resumo:
The axial coefficients of thermal expansion (CTE) of various carbon nanotubes (CNTs), i.e., single-wall carbon nanotubes (SWCNTs), and some multi-wall carbon nanotubes (MWCNTs), were predicted using molecular dynamics (MDs) simulations. The effects of two parameters, i.e., temperature and the CNT diameter, on CTE were investigated extensively. For all SWCNTs and MWCNTs, the obtained results clearly revealed that within a wide low temperature range, their axial CTEs are negative. As the diameter of CNTs decreases, this temperature range for negative axial CTEs becomes narrow, and positive axial CTEs appear in high temperature range. It was found that the axial CTEs vary nonlinearly with the temperature, however, they decrease linearly as the CNT diameter increases. Moreover, within a wide temperature range, a set of empirical formulations was proposed for evaluating the axial CTEs of armchair and zigzag SWCNTs using the above two parameters. Finally, it was found that the absolute value of the negative axial CTE of any MWCNT is much smaller than those of its constituent SWCNTs, and the average value of the CTEs of its constituent SWCNTs. The present fundamental study is very important for understanding the thermal behaviors of CNTs in such as nanocomposite temperature sensors, or nanoelectronics devices using CNTs.
Resumo:
The excellent multi-functional properties of carbon nanotube (CNT) and graphene have enabled them as appealing building blocks to construct 3D carbon-based nanomaterials or nanostructures. The recently reported graphene nanotube hybrid structure (GNHS) is one of the representatives of such nanostructures. This work investigated the relationships between the mechanical properties of the GNHS and its structure basing on large-scale molecular dynamics simulations. It is found that increasing the length of the constituent CNTs, the GNHS will have a higher Young’s modulus and yield strength. Whereas, no strong correlation is found between the number of graphene layers and Young’s modulus and yield strength, though more graphene layers intends to lead to a higher yield strain. In the meanwhile, the presences of multi-wall CNTs are found to greatly strengthen the hybrid structure. Generally, the hybrid structures exhibit a brittle behavior and the failure initiates from the connecting regions between CNT and graphene. More interestingly, affluent formations of monoatomic chains and rings are found at the fracture region. This study provides an in-depth understanding of the mechanical performance of the GNHSs while varying their structures, which will shed lights on the design and also the applications of the carbon-based nanostructures.
Resumo:
Protein molecular motors are natural nano-machines that convert the chemical energy from the hydrolysis of adenosine triphosphate into mechanical work. These efficient machines are central to many biological processes, including cellular motion, muscle contraction and cell division. The remarkable energetic efficiency of the protein molecular motors coupled with their nano-scale has prompted an increasing number of studies focusing on their integration in hybrid micro- and nanodevices, in particular using linear molecular motors. The translation of these tentative devices into technologically and economically feasible ones requires an engineering, design-orientated approach based on a structured formalism, preferably mathematical. This contribution reviews the present state of the art in the modelling of protein linear molecular motors, as relevant to the future design-orientated development of hybrid dynamic nanodevices. © 2009 The Royal Society of Chemistry.
Resumo:
This thesis is a comparative study of the modelling of mechanical behaviours of F-actin cytoskeleton which is an important structural component in living cells. A new granular model was developed for F-actin cytoskeleton based on the concept of multiscale modelling. This framework overcomes difficulties encountered in physical modelling of cytoskeleton in conventional continuum mechanics modelling, and the computational challenges in all-atom molecular dynamics simulation. The thermostat algorithm was further modified to better predict the thermodynamic properties of F-actin cytoskeleton in modelling. This multiscale modelling framework was applied in explaining the physical mechanisms of cytoskeleton responses to external mechanical loads.
Resumo:
The capabilities of the mechanical resonator-based nanosensors in detecting ultra-small mass or force shifts have driven a continuing exploration of the palette of nanomaterials for such application purposes. Based on large-scale molecular dynamics simulations, we have assessed the applicability of a new class of carbon nanomaterials for nanoresonator usage, i.e. the single-wall carbon nanotube (SWNT) network. It is found that SWNT networks inherit excellent mechanical properties from the constituent SWNTs, possessing a high natural frequency. However, although a high quality factor is suggested from the simulation results, it is hard to obtain an unambiguous Q-factor due to the existence of vibration modes in addition to the dominant mode. The nonlinearities resulting from these extra vibration modes are found to exist uniformly under various testing conditions including different initial actuations and temperatures. Further testing shows that these modes can be effectively suppressed through the introduction of axial strain, leading to an extremely high quality factor in the order of 109 estimated from the SWNT network with 2% tensile strain. Additional studies indicate that the carbon rings connecting the SWNTs can also be used to alter the vibrational properties of the resulting network. This study suggests that the SWNT network can be a good candidate for applications as nanoresonators.
Resumo:
Living cells are the functional unit of organs that controls reactions to their exterior. However, the mechanics of living cells can be difficult to characterize due to the crypticity of their microscale structures and associated dynamic cellular processes. Fortunately, multiscale modelling provides a powerful simulation tool that can be used to study the mechanical properties of these soft hierarchical, biological systems. This paper reviews recent developments in hierarchical multiscale modeling technique that aimed at understanding cytoskeleton mechanics. Discussions are expanded with respects to cytoskeletal components including: intermediate filaments, microtubules and microfilament networks. The mechanical performance of difference cytoskeleton components are discussed with respect to their structural and material properties. Explicit granular simulation methods are adopted with different coarse-grained strategies for these cytoskeleton components and the simulation details are introduced in this review.
Resumo:
The anatomy and microstructure of the spine and in particular the intervertebral disc are intimately linked to how they operate in vivo and how they distribute loads to the adjacent musculature and bony anatomy. The degeneration of the intervertebral discs may be characterised by a loss of hydration, loss of disc height, a granular texture and the presence of annular lesions. As such, degeneration of the intervertebral discs compromises the mechanical integrity of their components and results in adaption and modification in the mechanical means by which loads are distributed between adjacent spinal motion segments.
Resumo:
The fracture healing process is modulated by the mechanical environment created by imposed loads and motion between the bone fragments. Contact between the fragments obviously results in a significantly different stress and strain environment to a uniform fracture gap containing only soft tissue (e.g. haematoma). The assumption of the latter in existing computational models of the healing process will hence exaggerate the inter-fragmentary strain in many clinically-relevant cases. To address this issue, we introduce the concept of a contact zone that represents a variable degree of contact between cortices by the relative proportions of bone and soft tissue present. This is introduced as an initial condition in a two-dimensional iterative finite element model of a healing tibial fracture, in which material properties are defined by the volume fractions of each tissue present. The algorithm governing the formation of cartilage and bone in the fracture callus uses fuzzy logic rules based on strain energy density resulting from axial compression. The model predicts that increasing the degree of initial bone contact reduces the amount of callus formed (periosteal callus thickness 3.1mm without contact, down to 0.5mm with 10% bone in contact zone). This is consistent with the greater effective stiffness in the contact zone and hence, a smaller inter-fragmentary strain. These results demonstrate that the contact zone strategy reasonably simulates the differences in the healing sequence resulting from the closeness of reduction.
Resumo:
Human-specific Bacteroides HF183 (HS-HF183), human-specific Enterococci faecium esp (HS-esp), human-specific adenoviruses (HS-AVs) and human-specific polyomaviruses (HS-PVs) assays were evaluated in freshwater, seawater and distilled water to detect fresh sewage. The sewage spiked water samples were also tested for the concentrations of traditional fecal indicators (i.e., Escherichia coli, enterococci and Clostridium perfringens) and enteric viruses such as enteroviruses (EVs), sapoviruses (SVs), and torquetenoviruses (TVs). The overall host-specificity of the HS-HF183 marker to differentiate between humans and other animals was 98%. However, the HS-esp, HS-AVs and HS-PVs showed 100% hostspecificity. All the human-specific markers showed >97% sensitivity to detect human fecal pollution. E. coli, enterococci and, C. perfringens were detected up to dilutions of sewage 10_5, 10_4 and 10_3 respectively.HS-esp, HS-AVs, HS-PVs, SVs and TVs were detected up to dilution of sewage 10_4 whilst EVs were detected up to dilution 10_5. The ability of the HS-HF183 marker to detect freshsewagewas3–4 orders ofmagnitude higher than that of the HS-esp and viral markers. The ability to detect fresh sewage in freshwater, seawater and distilled water matrices was similar for human-specific bacterial and viral marker. Based on our data, it appears that human-specific molecular markers are sensitive measures of fresh sewage pollution, and the HS-HF183 marker appears to be the most sensitive among these markers in terms of detecting fresh sewage. However, the presence of the HS-HF183 marker in environmental waters may not necessarily indicate the presence of enteric viruses due to their high abundance in sewage compared to enteric viruses. More research is required on the persistency of these markers in environmental water samples in relation to traditional fecal indicators and enteric pathogens.
Resumo:
This paper aims to develop an effective numerical simulation technique for the dynamic deflection analysis of nanotubes-based nanoswitches. The nanoswitch is simplified to a continuum structure, and some key material parameters are extracted from typical molecular dynamics (MD). An advanced local meshless formulation is applied to obtain the discretized dynamic equations for the numerical solution. The developed numerical technique is firstly validated by the static deflection analyses of nanoswitches, and then, the fundamental dynamic properties of nanoswitches are analyzed. A parametric comparison with the results in the literature and from experiments shows that the developed modelling approach is accurate, efficient and effective.