51 resultados para Mean squared error
Resumo:
In Australia and increasingly worldwide, methamphetamine is one of the most commonly seized drugs analysed by forensic chemists. The current well-established GC/MS methods used to identify and quantify methamphetamine are lengthy, expensive processes, but often rapid analysis is requested by undercover police leading to an interest in developing this new analytical technique. Ninety six illicit drug seizures containing methamphetamine (0.1% - 78.6%) were analysed using Fourier Transform Infrared Spectroscopy with an Attenuated Total Reflectance attachment and Chemometrics. Two Partial Least Squares models were developed, one using the principal Infrared Spectroscopy peaks of methamphetamine and the other a Hierarchical Partial Least Squares model. Both of these models were refined to choose the variables that were most closely associated with the methamphetamine % vector. Both of the models were excellent, with the principal peaks in the Partial Least Squares model having Root Mean Square Error of Prediction 3.8, R2 0.9779 and lower limit of quantification 7% methamphetamine. The Hierarchical Partial Least Squares model had lower limit of quantification 0.3% methamphetamine, Root Mean Square Error of Prediction 5.2 and R2 0.9637. Such models offer rapid and effective methods for screening illicit drug samples to determine the percentage of methamphetamine they contain.
Resumo:
Automated crowd counting has become an active field of computer vision research in recent years. Existing approaches are scene-specific, as they are designed to operate in the single camera viewpoint that was used to train the system. Real world camera networks often span multiple viewpoints within a facility, including many regions of overlap. This paper proposes a novel scene invariant crowd counting algorithm that is designed to operate across multiple cameras. The approach uses camera calibration to normalise features between viewpoints and to compensate for regions of overlap. This compensation is performed by constructing an 'overlap map' which provides a measure of how much an object at one location is visible within other viewpoints. An investigation into the suitability of various feature types and regression models for scene invariant crowd counting is also conducted. The features investigated include object size, shape, edges and keypoints. The regression models evaluated include neural networks, K-nearest neighbours, linear and Gaussian process regresion. Our experiments demonstrate that accurate crowd counting was achieved across seven benchmark datasets, with optimal performance observed when all features were used and when Gaussian process regression was used. The combination of scene invariance and multi camera crowd counting is evaluated by training the system on footage obtained from the QUT camera network and testing it on three cameras from the PETS 2009 database. Highly accurate crowd counting was observed with a mean relative error of less than 10%. Our approach enables a pre-trained system to be deployed on a new environment without any additional training, bringing the field one step closer toward a 'plug and play' system.
Resumo:
A cross-sectional survey was conducted, and the construct validity and reliability of the Brisbane Practice Environment Measure in an Australian sample of registered nurses were examined. Nurses were randomly selected from the database of an Australian nursing organization. The original 33 items of the Brisbane Practice Environment Measure were utilized to inform the psychometric properties using confirmatory factor analysis. The Cronbach's alpha was 0.938 for the total scale and ranged 0.657–0.887 for the subscales. A five-factor structure of the measure was confirmed, χ2 = 944.622, (P < 0.01), χ2/d.f. ratio = 2.845, Tucker Lewis Index 0.929, Root Mean Square Error = 0.061 and Comparative Fit Index = 0.906. The selected 28 items of the measure proved reliable and valid in measuring effects of the practice environment upon Australian nurses. The implications are that regular measurement of the practice environment using these 28 items might assist in the development of strategies which might improve job satisfaction and retention of registered nurses in Australia.
Resumo:
Transport through crowded environments is often classified as anomalous, rather than classical, Fickian diffusion. Several studies have sought to describe such transport processes using either a continuous time random walk or fractional order differential equation. For both these models the transport is characterized by a parameter α, where α = 1 is associated with Fickian diffusion and α < 1 is associated with anomalous subdiffusion. Here, we simulate a single agent migrating through a crowded environment populated by impenetrable, immobile obstacles and estimate α from mean squared displacement data. We also simulate the transport of a population of such agents through a similar crowded environment and match averaged agent density profiles to the solution of a related fractional order differential equation to obtain an alternative estimate of α. We examine the relationship between our estimate of α and the properties of the obstacle field for both a single agent and a population of agents; we show that in both cases, α decreases as the obstacle density increases, and that the rate of decrease is greater for smaller obstacles. Our work suggests that it may be inappropriate to model transport through a crowded environment using widely reported approaches including power laws to describe the mean squared displacement and fractional order differential equations to represent the averaged agent density profiles.
Resumo:
Background: The overuse of antibiotics is becoming an increasing concern. Antibiotic resistance, which increases both the burden of disease, and the cost of health services, is perhaps the most profound impact of antibiotics overuse. Attempts have been made to develop instruments to measure the psychosocial constructs underlying antibiotics use, however, none of these instruments have undergone thorough psychometric validation. This study evaluates the psychometric properties of the Parental Perceptions on Antibiotics (PAPA) scales. The PAPA scales attempt to measure the factors influencing parental use of antibiotics in children. Methods: 1111 parents of children younger than 12 years old were recruited from primary schools’ parental meetings in the Eastern Province of Saudi Arabia from September 2012 to January 2013. The structure of the PAPA instrument was validated using Confirmatory Factor Analysis (CFA) with measurement model fit evaluated using the raw and scaled χ2, Goodness of Fit Index, and Root Mean Square Error of Approximation. Results: A five-factor model was confirmed with the model showing good fit. Constructs in the model include: Knowledge and Beliefs, Behaviors, Sources of information, Adherence, and Awareness about antibiotics resistance. The instrument was shown to have good internal consistency, and good discriminant and convergent validity. Conclusion: The availability of an instrument able to measure the psychosocial factors underlying antibiotics usage allows the risk factors underlying antibiotic use and overuse to now be investigated.
Resumo:
This paper presents two novel nonlinear models of u-shaped anti-roll tanks for ships, and their linearizations. In addition, a third simplified nonlinear model is presented. The models are derived using Lagrangian mechanics. This formulation not only simplifies the modeling process, but also allows one to obtain models that satisfy energy-related physical properties. The proposed nonlinear models and their linearizations are validated using model-scale experimental data. Unlike other models in the literature, the nonlinear models in this paper are valid for large roll amplitudes. Even at moderate roll angles, the nonlinear models have three orders of magnitude lower mean square error relative to experimental data than the linear models.
Resumo:
Research problem: Overfitting and collinearity problems commonly exist in current construction cost estimation applications and obstruct researchers and practitioners in achieving better modelling results. Research objective and method: A hybrid approach of Akaike information criterion (AIC) stepwise regression and principal component regression (PCR) is proposed to help solve overfitting and collinearity problems. Utilization of this approach in linear regression is validated by comparing it with other commonly used approaches. The mean square error obtained by leave-one-out cross validation (MSELOOCV) is used in model selection in deciding predictive variables.
Resumo:
Background Multi attribute utility instruments (MAUIs) are preference-based measures that comprise a health state classification system (HSCS) and a scoring algorithm that assigns a utility value to each health state in the HSCS. When developing a MAUI from a health-related quality of life (HRQOL) questionnaire, first a HSCS must be derived. This typically involves selecting a subset of domains and items because HRQOL questionnaires typically have too many items to be amendable to the valuation task required to develop the scoring algorithm for a MAUI. Currently, exploratory factor analysis (EFA) followed by Rasch analysis is recommended for deriving a MAUI from a HRQOL measure. Aim To determine whether confirmatory factor analysis (CFA) is more appropriate and efficient than EFA to derive a HSCS from the European Organisation for the Research and Treatment of Cancer’s core HRQOL questionnaire, Quality of Life Questionnaire (QLQ-C30), given its well-established domain structure. Methods QLQ-C30 (Version 3) data were collected from 356 patients receiving palliative radiotherapy for recurrent/metastatic cancer (various primary sites). The dimensional structure of the QLQ-C30 was tested with EFA and CFA, the latter informed by the established QLQ-C30 structure and views of both patients and clinicians on which are the most relevant items. Dimensions determined by EFA or CFA were then subjected to Rasch analysis. Results CFA results generally supported the proposed QLQ-C30 structure (comparative fit index =0.99, Tucker–Lewis index =0.99, root mean square error of approximation =0.04). EFA revealed fewer factors and some items cross-loaded on multiple factors. Further assessment of dimensionality with Rasch analysis allowed better alignment of the EFA dimensions with those detected by CFA. Conclusion CFA was more appropriate and efficient than EFA in producing clinically interpretable results for the HSCS for a proposed new cancer-specific MAUI. Our findings suggest that CFA should be recommended generally when deriving a preference-based measure from a HRQOL measure that has an established domain structure.
Resumo:
Background and Aims Research into craving is hampered by lack of theoretical specification and a plethora of substance-specific measures. This study aimed to develop a generic measure of craving based on elaborated intrusion (EI) theory. Confirmatory factor analysis (CFA) examined whether a generic measure replicated the three-factor structure of the Alcohol Craving Experience (ACE) scale over different consummatory targets and time-frames. Design Twelve studies were pooled for CFA. Targets included alcohol, cigarettes, chocolate and food. Focal periods varied from the present moment to the previous week. Separate analyses were conducted for strength and frequency forms. Setting Nine studies included university students, with single studies drawn from an internet survey, a community sample of smokers and alcohol-dependent out-patients. Participants A heterogeneous sample of 1230 participants. Measurements Adaptations of the ACE questionnaire. Findings Both craving strength [comparative fit indices (CFI = 0.974; root mean square error of approximation (RMSEA) = 0.039, 95% confidence interval (CI) = 0.035–0.044] and frequency (CFI = 0.971, RMSEA = 0.049, 95% CI = 0.044–0.055) gave an acceptable three-factor solution across desired targets that mapped onto the structure of the original ACE (intensity, imagery, intrusiveness), after removing an item, re-allocating another and taking intercorrelated error terms into account. Similar structures were obtained across time-frames and targets. Preliminary validity data on the resulting 10-item Craving Experience Questionnaire (CEQ) for cigarettes and alcohol were strong. Conclusions The Craving Experience Questionnaire (CEQ) is a brief, conceptually grounded and psychometrically sound measure of desires. It demonstrates a consistent factor structure across a range of consummatory targets in both laboratory and clinical contexts.
Resumo:
BACKGROUND: The evaluation of retinal image quality in cataract eyes has gained importance and the clinical modulation transfer functions (MTF) can obtained by aberrometer and double pass (DP) system. This study aimed to compare MTF derived from a ray tracing aberrometer and a DP system in early cataractous and normal eyes. METHODS: There were 128 subjects with 61 control eyes and 67 eyes with early cataract defined according to the Lens Opacities Classification System III. A laser ray-tracing wavefront aberrometer (iTrace) and a double pass (DP) system (OQAS) assessed ocular MTF for 6.0 mm pupil diameters following dilation. Areas under the MTF (AUMTF) and their correlations were analyzed. Stepwise multiple regression analysis assessed factors affecting the differences between iTrace- and OQAS-derived AUMTF for the early cataract group. RESULTS: For both early cataract and control groups, iTrace-derived MTFs were higher than OQAS-derived MTFs across a range of spatial frequencies (P < 0.01). No significant difference between the two groups occurred for iTrace-derived AUMTF, but the early cataract group had significantly smaller OQAS-derived AUMTF than did the control group (P < 0.01). AUMTF determined from both the techniques demonstrated significant correlations with nuclear opacities, higher-order aberrations (HOAs), visual acuity, and contrast sensitivity functions, while the OQAS-derived AUMTF also demonstrated significant correlations with age and cortical opacity grade. The factors significantly affecting the difference between iTrace and OQAS AUMTF were root-mean-squared HOAs (standardized beta coefficient = -0.63, P < 0.01) and age (standardized beta coefficient = 0.26, P < 0.01). CONCLUSIONS: MTFs determined from a iTrace and a DP system (OQAS) differ significantly in early cataractous and normal subjects. Correlations with visual performance were higher for the DP system. OQAS-derived MTF may be useful as an indicator of visual performance in early cataract eyes.
Resumo:
Study design Retrospective validation study. Objectives To propose a method to evaluate, from a clinical standpoint, the ability of a finite-element model (FEM) of the trunk to simulate orthotic correction of spinal deformity and to apply it to validate a previously described FEM. Summary of background data Several FEMs of the scoliotic spine have been described in the literature. These models can prove useful in understanding the mechanisms of scoliosis progression and in optimizing its treatment, but their validation has often been lacking or incomplete. Methods Three-dimensional (3D) geometries of 10 patients before and during conservative treatment were reconstructed from biplanar radiographs. The effect of bracing was simulated by modeling displacements induced by the brace pads. Simulated clinical indices (Cobb angle, T1–T12 and T4–T12 kyphosis, L1–L5 lordosis, apical vertebral rotation, torsion, rib hump) and vertebral orientations and positions were compared to those measured in the patients' 3D geometries. Results Errors in clinical indices were of the same order of magnitude as the uncertainties due to 3D reconstruction; for instance, Cobb angle was simulated with a root mean square error of 5.7°, and rib hump error was 5.6°. Vertebral orientation was simulated with a root mean square error of 4.8° and vertebral position with an error of 2.5 mm. Conclusions The methodology proposed here allowed in-depth evaluation of subject-specific simulations, confirming that FEMs of the trunk have the potential to accurately simulate brace action. These promising results provide a basis for ongoing 3D model development, toward the design of more efficient orthoses.
Resumo:
PURPOSE: Previous research demonstrating that specific performance outcome goals can be achieved in different ways is functionally significant for springboard divers whose performance environment can vary extensively. This body of work raises questions about the traditional approach of balking (terminating the takeoff) by elite divers aiming to perform only identical, invariant movement patterns during practice. METHOD: A 12-week training program (2 times per day; 6.5 hr per day) was implemented with 4 elite female springboard divers to encourage them to adapt movement patterns under variable takeoff conditions and complete intended dives, rather than balk. RESULTS: Intraindividual analyses revealed small increases in variability in the board-work component of each diver's pretraining and posttraining program reverse-dive takeoffs. No topological differences were observed between movement patterns of dives completed pretraining and posttraining. Differences were noted in the amount of movement variability under different training conditions (evidenced by higher normalized root mean square error indexes posttraining). An increase in the number of completed dives (from 78.91%-86.84% to 95.59%-99.29%) and a decrease in the frequency of balked takeoffs (from 13.16%-19.41% to 0.63%-4.41%) showed that the elite athletes were able to adapt their behaviors during the training program. These findings coincided with greater consistency in the divers' performance during practice as scored by qualified judges. CONCLUSION: Results suggested that on completion of training, athletes were capable of successfully adapting their movement patterns under more varied takeoff conditions to achieve greater consistency and stability of performance outcomes.
Resumo:
Finite element analysis (FEA) models of uniaxial loading of pumpkin peel and flesh tissues were developed and validated using experimental results. The tensile model was developed for both linear elastic and plastic material models, the compression model was develop d only with the plastic material model. The outcomes of force versus time curves obtained from FEA models followed similar pattern to the experimental curves however the curve resulted with linear elastic material properties had a higher difference with the experimental curves. The values of predicted forces were determined and compared with the experimental curve. An error indicator was introduced and computed for each case and compared. Additionally Root Mean Square Error (RMSE) values were also calculated for each model and compared. The results of modelling were used to develop material model for peel and flesh tissues in FEA modelling of mechanical peeling of tough skinned vegetables.
Resumo:
Sampling strategies are developed based on the idea of ranked set sampling (RSS) to increase efficiency and therefore to reduce the cost of sampling in fishery research. The RSS incorporates information on concomitant variables that are correlated with the variable of interest in the selection of samples. For example, estimating a monitoring survey abundance index would be more efficient if the sampling sites were selected based on the information from previous surveys or catch rates of the fishery. We use two practical fishery examples to demonstrate the approach: site selection for a fishery-independent monitoring survey in the Australian northern prawn fishery (NPF) and fish age prediction by simple linear regression modelling a short-lived tropical clupeoid. The relative efficiencies of the new designs were derived analytically and compared with the traditional simple random sampling (SRS). Optimal sampling schemes were measured by different optimality criteria. For the NPF monitoring survey, the efficiency in terms of variance or mean squared errors of the estimated mean abundance index ranged from 114 to 199% compared with the SRS. In the case of a fish ageing study for Tenualosa ilisha in Bangladesh, the efficiency of age prediction from fish body weight reached 140%.