100 resultados para Manuais BIM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successful management of design changes is critical for the efficient delivery of construction projects. Building Information Modeling (BIM) is envisioned to play an important role in integrating design, construction and facility management processes through coordinated changes throughout the project life-cycle. BIM currently provides significant benefits in coordinating changes across different views in a single model, and identifying conflicts between different discipline-specific models. However, current BIM tools provide limited support in managing changes across several discipline-specific models. This paper describes an approach to represent, coordinate, and track changes within a collaborative multi-disciplinary BIM environment. This approach was informed by a detailed case study of a large, complex, fast-tracked BIM project where we investigated numerous design changes, analyzed change management processes, and evaluated existing BIM tools. Our approach characterises design changes in an ontology to represent changed component attributes, dependencies between components, and change impacts. It explores different types of dependencies amongst different design changes and describes how a graph based approach and dependency matrix could assist with automating the propagation and impact of changes in a BIM-based project delivery process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BIM as a suite of technologies has been enabled by the significant improvements in IT infrastructure, the capabilities of computer hardware and software, the increasing adoption of BIM, and the development of Industry Foundation Classes (IFC) which facilitate the sharing of information between firms. The report highlights the advantages of BIM, particularly the increased utility and speed, better data quality and enhanced fault finding in all construction phases. Additionally BIM promotes enhanced collaborations and visualisation of data mainly in the design and construction phase. There are a number of barriers to the effective implementation of BIM. These include, somewhat paradoxically, a single detailed model (which precludes scenarios and development of detailed alternative designs); the need for three different interoperability standards for effective implementation; added work for the designer which needs to be recognised and remunerated; the size and complexity of BIM, which requires significant investment in human capital to enable the realisation of its full potential. There are also a number of challenges to implementing BIM. The report has identified these as a range of issues concerning: IP, liability, risks and contracts, and the authenticity of users. Additionally, implementing BIM requires investment in new technology, skills training and development of news ways of collaboration. Finally, there are likely to be Trade Practices concerns as requiring certain technology owned by relatively few firms may limit

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores the effects of PLM and BIM on professional practice. It draws on existing literature documenting the experiences of both communities of practice to explain shifts in professional boundaries. A review of case study based literature compares the nature of changes triggered by PLM and BIM relative to the new activities, roles/responsibilities and knowledge competencies, and supply chain relationships. The paper synthesises these changes and reflects PLM and BIM experiences against each other so as to contrast the continuing evolution of professional practice and lessons learned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building information modelling (BIM) radically changes the practices in architecture, engineering and construction (AEC) and creates new job opportunities. Many governments, such as the United Kingdom, have made BIM a mandatory requirement. This substantially drives the demand for a BIM-literate workforce. Universities are facing the challenge to incorporate BIM into their curricula and produce “BIM ready” graduates to meet the needs of the industry. Like other universities, Queensland University of Technology (QUT) is at the heart of this change and aspires to develop collaborative BIM education across AEC. Previous BIM education studies identify that inadequate BIM awareness of AEC academics is one of the challenges for developing a BIM curriculum and there is a dearth in the learning and teaching support for academics on BIM education. Equipping the AEC academics for a more BIM focused curriculum is all the while more important. This paper aims to leverage knowledge drawn from a Learning & Teaching project currently undertaken at QUT. Its specific objectives are to: 1) review the existing learning and teaching initiatives on BIM education; and 2) briefly describe the learning and teaching activities on collaborative BIM education at QUT. Significance of the paper lies on revealing the importance of building up the capacity of AEC academics for collaborative BIM education. The paper contributes to sparking the interests in better equipping AEC academics to understand what curriculum changes would assist in BIM uptake within the relevant courses to provide context for changes in units; and how the use of BIM can improve the understanding by students of the large amounts of professional knowledge they need to function effectively as graduates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cost estimating has been acknowledged as a crucial component of construction projects. Depending on available information and project requirements, cost estimates evolve in tandem with project lifecycle stages; conceptualisation, design development, execution and facility management. The premium placed on the accuracy of cost estimates is crucial to producing project tenders and eventually in budget management. Notwithstanding the initial slow pace of its adoption, Building Information Modelling (BIM) has successfully addressed a number of challenges previously characteristic of traditional approaches in the AEC, including poor communication, the prevalence of islands of information and frequent reworks. Therefore, it is conceivable that BIM can be leveraged to address specific shortcomings of cost estimation. The impetus for leveraging BIM models for accurate cost estimation is to align budgeted and actual cost. This paper hypothesises that the accuracy of BIM-based estimation, as more efficient, process-mirrors of traditional cost estimation methods, can be enhanced by simulating traditional cost estimation factors variables. Through literature reviews and preliminary expert interviews, this paper explores the factors that could potentially lead to more accurate cost estimates for construction projects. The findings show numerous factors that affect the cost estimates ranging from project information and its characteristic, project team, clients, contractual matters, and other external influences. This paper will make a particular contribution to the early phase of BIM-based project estimation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cost estimating is a key task within Quantity Surveyors’ (QS) offices. Provision of an accurate estimate is vital to ensure that the objectives of the client are met by staying within the client’s budget. Building Information Modelling (BIM) is an evolving technology that has gained attention in the construction industries all over the world. Benefits from the use of BIM include cost and time savings if the processes used by the procurement team are adapted to maximise the benefits of BIM. BIM can be used by QSs to automate aspects of quantity take-off and the preparation of estimates, decreasing turnaround time and assist in controlling errors and inaccuracies. The Malaysian government has decided to require the use of BIM for its projects beginning from 2016. However, slow uptake is reported in the use of BIM both within companies and to support collaboration within the Malaysian industry. It has been recommended that QSs to start evaluating the impact of BIM on their practices. This paper reviews the perspectives of QSs in Malaysia towards the use of BIM to achieve more dependable results in their cost estimating practice. The objectives of this paper include identifying strategies in improving practice and potential adoption drivers that lead QSs to BIM usage in their construction projects. From the expert interviews, it was found out that, despite still using traditional methods and not practising BIM, the interviewees still acquire limited knowledge related to BIM. There are some drivers that potentially motivate them to employ BIM in their practices. These include client demands, innovation in traditional methods, speed in estimating costs, reduced time and costs, improvement in practices and self-awareness, efficiency in projects, and competition from other companies. The findings of this paper identify the potential drivers in encouraging Malaysian Quantity Surveyors to exploit BIM in their construction projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building Information Modelling (BIM) is a digital process that encompasses all aspects, disciplines and systems of built assets within a single virtual model. This allows stakeholders to collaborate more accurately and efficiently than with traditional processes. Case study 1 Design: New Generation Rollingstock Maintenance Centre, Queensland. Case Study 2 Construction: Perth Children's Hospital, Western Australia. Case Study 3 Asset Management: Sydney Opera House, New South Wales. This project sought to provide the built environment industry with a framework to measure and maximize benefits from implementing BIM across the life-cycle phases of a built asset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The delivery of products and services for construction-based businesses is increasingly becoming knowledge-driven and information-intensive. The proliferation of building information modelling (BIM) has increased business opportunities as well as introduced new challenges for the architectural, engineering and construction and facilities management (AEC/FM) industry. As such, the effective use, sharing and exchange of building life cycle information and knowledge management in building design, construction, maintenance and operation assumes a position of paramount importance. This paper identifies a subset of construction management (CM) relevant knowledge for different design conditions of building components through a critical, comprehensive review of synthesized literature and other information gathering and knowledge acquisition techniques. It then explores how such domain knowledge can be formalized as ontologies and, subsequently, a query vocabulary in order to equip BIM users with the capacity to query digital models of a building for the retrieval of useful and relevant domain-specific information. The formalized construction knowledge is validated through interviews with domain experts in relation to four case study projects. Additionally, retrospective analyses of several design conditions are used to demonstrate the soundness (realism), completeness, and appeal of the knowledge base and query-based reasoning approach in relation to the state-of-the-art tools, Solibri Model Checker and Navisworks. The knowledge engineering process and the methods applied in this research for information representation and retrieval could provide useful mechanisms to leverage BIM in support of a number of knowledge intensive CM/FM tasks and functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In architecture courses, instilling a wider understanding of the industry specific representations practiced in the Building Industry is normally done under the auspices of Technology and Science subjects. Traditionally, building industry professionals communicated their design intentions using industry specific representations. Originally these mainly two dimensional representations such as plans, sections, elevations, schedules, etc. were produced manually, using a drawing board. Currently, this manual process has been digitised in the form of Computer Aided Design and Drafting (CADD) or ubiquitously simply CAD. While CAD has significant productivity and accuracy advantages over the earlier manual method, it still only produces industry specific representations of the design intent. Essentially, CAD is a digital version of the drawing board. The tool used for the production of these representations in industry is still mainly CAD. This is also the approach taken in most traditional university courses and mirrors the reality of the situation in the building industry. A successor to CAD, in the form of Building Information Modelling (BIM), is presently evolving in the Construction Industry. CAD is mostly a technical tool that conforms to existing industry practices. BIM on the other hand is revolutionary both as a technical tool and as an industry practice. Rather than producing representations of design intent, BIM produces an exact Virtual Prototype of any building that in an ideal situation is centrally stored and freely exchanged between the project team. Essentially, BIM builds any building twice: once in the virtual world, where any faults are resolved, and finally, in the real world. There is, however, no established model for learning through the use of this technology in Architecture courses. Queensland University of Technology (QUT), a tertiary institution that maintains close links with industry, recognises the importance of equipping their graduates with skills that are relevant to industry. BIM skills are currently in increasing demand throughout the construction industry through the evolution of construction industry practices. As such, during the second half of 2008, QUT 4th year architectural students were formally introduced for the first time to BIM, as both a technology and as an industry practice. This paper will outline the teaching team’s experiences and methodologies in offering a BIM unit (Architectural Technology and Science IV) at QUT for the first time and provide a description of the learning model. The paper will present the results of a survey on the learners’ perspectives of both BIM and their learning experiences as they learn about and through this technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

“SOH see significant benefit in digitising its drawings and operation and maintenance manuals. Since SOH do not currently have digital models of the Opera House structure or other components, there is an opportunity for this national case study to promote the application of Digital Facility Modelling using standardized Building Information Models (BIM)”. The digital modelling element of this project examined the potential of building information models for Facility Management focusing on the following areas: • The re-usability of building information for FM purposes • BIM as an Integrated information model for facility management • Extendibility of the BIM to cope with business specific requirements • Commercial facility management software using standardised building information models • The ability to add (organisation specific) intelligence to the model • A roadmap for SOH to adopt BIM for FM The project has established that BIM – building information modelling - is an appropriate and potentially beneficial technology for the storage of integrated building, maintenance and management data for SOH. Based on the attributes of a BIM, several advantages can be envisioned: consistency in the data, intelligence in the model, multiple representations, source of information for intelligent programs and intelligent queries. The IFC – open building exchange standard – specification provides comprehensive support for asset and facility management functions, and offers new management, collaboration and procurement relationships based on sharing of intelligent building data. The major advantages of using an open standard are: information can be read and manipulated by any compliant software, reduced user “lock in” to proprietary solutions, third party software can be the “best of breed” to suit the process and scope at hand, standardised BIM solutions consider the wider implications of information exchange outside the scope of any particular vendor, information can be archived as ASCII files for archival purposes, and data quality can be enhanced as the now single source of users’ information has improved accuracy, correctness, currency, completeness and relevance. SOH current building standards have been successfully drafted for a BIM environment and are confidently expected to be fully developed when BIM is adopted operationally by SOH. There have been remarkably few technical difficulties in converting the House’s existing conventions and standards to the new model based environment. This demonstrates that the IFC model represents world practice for building data representation and management (see Sydney Opera House – FM Exemplar Project Report Number 2005-001-C-3, Open Specification for BIM: Sydney Opera House Case Study). Availability of FM applications based on BIM is in its infancy but focussed systems are already in operation internationally and show excellent prospects for implementation systems at SOH. In addition to the generic benefits of standardised BIM described above, the following FM specific advantages can be expected from this new integrated facilities management environment: faster and more effective processes, controlled whole life costs and environmental data, better customer service, common operational picture for current and strategic planning, visual decision-making and a total ownership cost model. Tests with partial BIM data – provided by several of SOH’s current consultants – show that the creation of a SOH complete model is realistic, but subject to resolution of compliance and detailed functional support by participating software applications. The showcase has demonstrated successfully that IFC based exchange is possible with several common BIM based applications through the creation of a new partial model of the building. Data exchanged has been geometrically accurate (the SOH building structure represents some of the most complex building elements) and supports rich information describing the types of objects, with their properties and relationships.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Digital Modelling Report incorporates the previous research completed for the FM Exemplar Project utilising the Sydney Opera House as a case study. The research has demonstrated significant benefits in digitising design documentation and operational and maintenance manuals. Since Sydney Opera House do not have digital models of its structure, there is an opportunity to investigate the application of Digital Facility Modelling using standardised Building Information Models (BIM). The digital modelling research project has examined the potential of standardised building information models to develop a digital facility model supporting facilities management (FM). The focus of this investigation was on the following areas: • The re-usability of standardised building information models (BIM) for FM purposes. • The potential of BIM as an information framework acting as integrator for various FM data sources. • The extendibility and flexibility of the BIM to cope with business specific data and requirements. • Commercial FM software using standardised building information models. • The ability to add (organisation-specific) intelligence to the model. • A roadmap for Sydney Opera House to adopt BIM for FM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Facility managers have to acquire, integrate, edit and update diverse facility information ranging from building elements & fabric data, operational costs, contract types, room allocation, logistics, maintenance, etc. With the advent of standardized Building Information Models (BIM) such as the Industry Foundation Classes (IFC) new opportunities are available for Facility Managers to manage their FM data. The usage of IFC supports data interoperability between different software systems including the use of operational data for facility management systems. Besides the re-use of building data, the Building Information Model can be used as an information framework for storing and retrieving FM related data. Currently several BIM driven FM systems are available including IFC compliant ones. These systems have the potential to not only manage primary data more effectively but also to offer practical systems for detailed monitoring, and analysis of facility performance that can underpin innovative and more cost effective management of complex facilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Automated Estimator and LCADesign are two early examples of nD modelling software which both rely on the extraction of quantities from CAD models to support their further processing. The issues of building information modelling (BIM), quantity takeoff for different purposes and automating quantity takeoff are discussed by comparing the aims and use of the two programs. The technical features of the two programs are also described. The technical issues around the use of 3D models is described together with implementation issues and comments about the implementation of the IFC specifications. Some user issues that emerged through the development process are described, with a summary of the generic research tasks which are necessary to fully support the use of BIM and nD modelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Building Information Model (BIM) software, collaboration platforms and 5D Construction Management software is now commercially available and presents the opportunity for construction project teams to design more cost effectively, plan construction earlier, manage costs throughout the life cycle of a building project and provide a central asset management register for facilities managers. This paper outlines the merits of taking a holistic view of ICT in curriculum design. The educational barriers to implementation of these models and planning tools are highlighted. Careful choice of computer software can make a significant difference to how quickly students can master skills; how easy it is to study and how much they enjoy learning and be prepared for employment. An argument for BIM and 5D planning tools to be introduced into the curriculum to assist industry increase productivity and efficiencies are outlined by the authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since 1995 the buildingSMART International Alliance for Interoperability (buildingSMART)has developed a robust standard called the Industry Foundation Classes (IFC). IFC is an object oriented data model with related file format that has facilitated the efficient exchange of data in the development of building information models (BIM). The Cooperative Research Centre for Construction Innovation has contributed to the international effort in the development of the IFC standard and specifically the reinforced concrete part of the latest IFC 2x3 release. Industry Foundation Classes have been endorsed by the International Standards Organisation as a Publicly Available Specification (PAS) under the ISO label ISO/PAS 16739. For more details, go to http://www.tc184- sc4.org/About_TC184-SC4/About_SC4_Standards/ The current IFC model covers the building itself to a useful level of detail. The next stage of development for the IFC standard is where the building meets the ground (terrain) and with civil and external works like pavements, retaining walls, bridges, tunnels etc. With the current focus in Australia on infrastructure projects over the next 20 years a logical extension to this standard was in the area of site and civil works. This proposal recognises that there is an existing body of work on the specification of road representation data. In particular, LandXML is recognised as also is TransXML in the broader context of transportation and CityGML in the common interfacing of city maps, buildings and roads. Examination of interfaces between IFC and these specifications is therefore within the scope of this project. That such interfaces can be developed has already been demonstrated in principle within the IFC for Geographic Information Systems (GIS) project. National road standards that are already in use should be carefully analysed and contacts established in order to gain from this knowledge. The Object Catalogue for the Road Transport Sector (OKSTRA) should be noted as an example. It is also noted that buildingSMART Norway has submitted a proposal