43 resultados para Lyapunov theorem
Resumo:
Recent controversy on the quantum dots dephasing mechanisms (between pure and inelastic) is re-examined by isolating the quantum dots from their substrate by using the appropriate limits of the ionization energy theory and the quantum adiabatic theorem. When the phonons in the quantum dots are isolated adiabatically from the phonons in the substrate, the elastic or pure dephasing becomes the dominant mechanism. On the other hand, for the case where the phonons from the substrate are non-adiabatically coupled to the quantum dots, the inelastic dephasing process takes over. This switch-over is due to different elemental composition in quantum dots as compared to its substrate. We also provide unambiguous analysis as to understand why GaAs/AlGaAs quantum dots may only have pure dephasing while InAs/GaAs quantum dots give rise to the inelastic dephasing as the dominant mechanism. It is shown that the elemental composition plays an important role (of both quantum dots and substrate) in evaluating the dephasing mechanisms of quantum dots.
Resumo:
Tobacco smoking, alcohol drinking, and occupational exposures to polycyclic aromatic hydrocarbons are the major proven risk factors for human head and neck squamous-cell cancer (HNSCC). Major research focus on gene-environment interactions concerning HNSCC has been on genes encoding enzymes of metabolism for tobacco smoke constituents and repair enzymes. To investigate the role of genetically determined individual predispositions in enzymes of xenobiotic metabolism and in repair enzymes under the exogenous risk factor tobacco smoke in the carcinogenesis of HNSCC, we conducted a case-control study on 312 cases and 300 noncancer controls. We focused on the impact of 22 sequence variations in CYP1A1, CYP1B1, CYP2E1, ERCC2/XPD, GSTM1, GSTP1, GSTT1, NAT2, NQO1, and XRCC1. To assess relevant main and interactive effects of polymorphic genes on the susceptibility to HNSCC we used statistical models such as logic regression and a Bayesian version of logic regression. In subgroup analysis of nonsmokers, main effects in ERCC2 (Lys751Gln) C/C genotype and combined ERCC2 (Arg156Arg) C/A and A/A genotypes were predominant. When stratifying for smokers, the data revealed main effects on combined CYP1B1 (Leu432Val) C/G and G/G genotypes, followed by CYP1B1 (Leu432Val) G/G genotype and CYP2E1 (-70G>T) G/T genotype. When fitting logistic regression models including relevant main effects and interactions in smokers, we found relevant associations of CYP1B1 (Leu432Val) C/G genotype and CYP2E1 (-70G>T) G/T genotype (OR, 10.84; 95% CI, 1.64-71.53) as well as CYP1B1 (Leu432Val) G/G genotype and GSTM1 null/null genotype (OR, 11.79; 95% CI, 2.18-63.77) with HNSCC. The findings underline the relevance of genotypes of polymorphic CYP1B1 combined with exposures to tobacco smoke.
Resumo:
This research aims to explore and identify political risks on a large infrastructure project in an exaggerated environment to ascertain whether sufficient objective information can be gathered by project managers to utilise risk modelling techniques. During the study, the author proposes a new definition of political risk; performs a detailed project study of the Neelum Jhelum Hydroelectric Project in Pakistan; implements a probabilistic model using the principle of decomposition and Bayes probabilistic theorem and answers the question: was it possible for project managers to obtain all the relevant objective data to implement a probabilistic model?
Resumo:
Background Although the detrimental impact of major depressive disorder (MDD) at the individual level has been described, its global epidemiology remains unclear given limitations in the data. Here we present the modelled epidemiological profile of MDD dealing with heterogeneity in the data, enforcing internal consistency between epidemiological parameters and making estimates for world regions with no empirical data. These estimates were used to quantify the burden of MDD for the Global Burden of Disease Study 2010 (GBD 2010). Method Analyses drew on data from our existing literature review of the epidemiology of MDD. DisMod-MR, the latest version of the generic disease modelling system redesigned as a Bayesian meta-regression tool, derived prevalence by age, year and sex for 21 regions. Prior epidemiological knowledge, study- and country-level covariates adjusted sub-optimal raw data. Results There were over 298 million cases of MDD globally at any point in time in 2010, with the highest proportion of cases occurring between 25 and 34 years. Global point prevalence was very similar across time (4.4% (95% uncertainty: 4.2–4.7%) in 1990, 4.4% (4.1–4.7%) in 2005 and 2010), but higher in females (5.5% (5.0–6.0%) compared to males (3.2% (3.0–3.6%) in 2010. Regions in conflict had higher prevalence than those with no conflict. The annual incidence of an episode of MDD followed a similar age and regional pattern to prevalence but was about one and a half times higher, consistent with an average duration of 37.7 weeks. Conclusion We were able to integrate available data, including those from high quality surveys and sub-optimal studies, into a model adjusting for known methodological sources of heterogeneity. We were also able to estimate the epidemiology of MDD in regions with no available data. This informed GBD 2010 and the public health field, with a clearer understanding of the global distribution of MDD.
Resumo:
Background Depressive disorders were a leading cause of burden in the Global Burden of Disease (GBD) 1990 and 2000 studies. Here, we analyze the burden of depressive disorders in GBD 2010 and present severity proportions, burden by country, region, age, sex, and year, as well as burden of depressive disorders as a risk factor for suicide and ischemic heart disease. Methods and Findings Burden was calculated for major depressive disorder (MDD) and dysthymia. A systematic review of epidemiological data was conducted. The data were pooled using a Bayesian meta-regression. Disability weights from population survey data quantified the severity of health loss from depressive disorders. These weights were used to calculate years lived with disability (YLDs) and disability adjusted life years (DALYs). Separate DALYs were estimated for suicide and ischemic heart disease attributable to depressive disorders.Depressive disorders were the second leading cause of YLDs in 2010. MDD accounted for 8.2% (5.9%-10.8%) of global YLDs and dysthymia for 1.4% (0.9%-2.0%). Depressive disorders were a leading cause of DALYs even though no mortality was attributed to them as the underlying cause. MDD accounted for 2.5% (1.9%-3.2%) of global DALYs and dysthymia for 0.5% (0.3%-0.6%). There was more regional variation in burden for MDD than for dysthymia; with higher estimates in females, and adults of working age. Whilst burden increased by 37.5% between 1990 and 2010, this was due to population growth and ageing. MDD explained 16 million suicide DALYs and almost 4 million ischemic heart disease DALYs. This attributable burden would increase the overall burden of depressive disorders from 3.0% (2.2%-3.8%) to 3.8% (3.0%-4.7%) of global DALYs. Conclusions GBD 2010 identified depressive disorders as a leading cause of burden. MDD was also a contributor of burden allocated to suicide and ischemic heart disease. These findings emphasize the importance of including depressive disorders as a public-health priority and implementing cost-effective interventions to reduce its burden.Please see later in the article for the Editors' Summary.
Resumo:
We present a systematic, practical approach to developing risk prediction systems, suitable for use with large databases of medical information. An important part of this approach is a novel feature selection algorithm which uses the area under the receiver operating characteristic (ROC) curve to measure the expected discriminative power of different sets of predictor variables. We describe this algorithm and use it to select variables to predict risk of a specific adverse pregnancy outcome: failure to progress in labour. Neural network, logistic regression and hierarchical Bayesian risk prediction models are constructed, all of which achieve close to the limit of performance attainable on this prediction task. We show that better prediction performance requires more discriminative clinical information rather than improved modelling techniques. It is also shown that better diagnostic criteria in clinical records would greatly assist the development of systems to predict risk in pregnancy. We present a systematic, practical approach to developing risk prediction systems, suitable for use with large databases of medical information. An important part of this approach is a novel feature selection algorithm which uses the area under the receiver operating characteristic (ROC) curve to measure the expected discriminative power of different sets of predictor variables. We describe this algorithm and use it to select variables to predict risk of a specific adverse pregnancy outcome: failure to progress in labour. Neural network, logistic regression and hierarchical Bayesian risk prediction models are constructed, all of which achieve close to the limit of performance attainable on this prediction task. We show that better prediction performance requires more discriminative clinical information rather than improved modelling techniques. It is also shown that better diagnostic criteria in clinical records would greatly assist the development of systems to predict risk in pregnancy.
Resumo:
This paper presents a trajectory-tracking control strategy for a class of mechanical systems in Hamiltonian form. The class is characterised by a simplectic interconnection arising from the use of generalised coordinates and full actuation. The tracking error dynamic is modelled as a port-Hamiltonian Systems (PHS). The control action is designed to take the error dynamics into a desired closed-loop PHS characterised by a constant mass matrix and a potential energy with a minimum at the origin. A transformation of the momentum and a feedback control is exploited to obtain a constant generalised mass matrix in closed loop. The stability of the close-loop system is shown using the close-loop Hamiltonian as a Lyapunov function. The paper also considers the addition of integral action to design a robust controller that ensures tracking in spite of disturbances. As a case study, the proposed control design methodology is applied to a fully actuated robotic manipulator.
Resumo:
Real-world cryptographic protocols such as the widely used Transport Layer Security (TLS) protocol support many different combinations of cryptographic algorithms (called ciphersuites) and simultaneously support different versions. Recent advances in provable security have shown that most modern TLS ciphersuites are secure authenticated and confidential channel establishment (ACCE) protocols, but these analyses generally focus on single ciphersuites in isolation. In this paper we extend the ACCE model to cover protocols with many different sub-protocols, capturing both multiple ciphersuites and multiple versions, and define a security notion for secure negotiation of the optimal sub-protocol. We give a generic theorem that shows how secure negotiation follows, with some additional conditions, from the authentication property of secure ACCE protocols. Using this framework, we analyse the security of ciphersuite and three variants of version negotiation in TLS, including a recently proposed mechanism for detecting fallback attacks.
Resumo:
To further investigate susceptibility loci identified by genome-wide association studies, we genotyped 5,500 SNPs across 14 associated regions in 8,000 samples from a control group and 3 diseases: type 2 diabetes (T2D), coronary artery disease (CAD) and Graves' disease. We defined, using Bayes theorem, credible sets of SNPs that were 95% likely, based on posterior probability, to contain the causal disease-associated SNPs. In 3 of the 14 regions, TCF7L2 (T2D), CTLA4 (Graves' disease) and CDKN2A-CDKN2B (T2D), much of the posterior probability rested on a single SNP, and, in 4 other regions (CDKN2A-CDKN2B (CAD) and CDKAL1, FTO and HHEX (T2D)), the 95% sets were small, thereby excluding most SNPs as potentially causal. Very few SNPs in our credible sets had annotated functions, illustrating the limitations in understanding the mechanisms underlying susceptibility to common diseases. Our results also show the value of more detailed mapping to target sequences for functional studies. © 2012 Nature America, Inc. All rights reserved.
Resumo:
This study implemented linear and nonlinear methods of measuring variability to determine differences in stability of two groups of skilled (n = 10) and unskilled (n = 10) participants performing 3m forward/backward shuttle agility drill. We also determined whether stability measures differed between the forward and backward segments of the drill. Finally, we sought to investigate whether local dynamic stability, measured using largest finite-time Lyapunov exponents, changed from distal to proximal lower extremity segments. Three-dimensional coordinates of five lower extremity markers data were recorded. Results revealed that the Lyapunov exponents were lower (P < 0.05) for skilled participants at all joint markers indicative of higher levels of local dynamic stability. Additionally, stability of motion did not differ between forward and backward segments of the drill (P > 0.05), signifying that almost the same control strategy was used in forward and backward directions by all participants, regardless of skill level. Furthermore, local dynamic stability increased from distal to proximal joints (P < 0.05) indicating that stability of proximal segments are prioritized by the neuromuscular control system. Finally, skilled participants displayed greater foot placement standard deviation values (P < 0.05), indicative of adaptation to task constraints. The results of this study provide new methods for sport scientists, coaches to characterize stability in agility drill performance.
Resumo:
In this paper, the trajectory tracking control of an autonomous underwater vehicle (AUVs) in six-degrees-of-freedom (6-DOFs) is addressed. It is assumed that the system parameters are unknown and the vehicle is underactuated. An adaptive controller is proposed, based on Lyapunov׳s direct method and the back-stepping technique, which interestingly guarantees robustness against parameter uncertainties. The desired trajectory can be any sufficiently smooth bounded curve parameterized by time even if consist of straight line. In contrast with the majority of research in this field, the likelihood of actuators׳ saturation is considered and another adaptive controller is designed to overcome this problem, in which control signals are bounded using saturation functions. The nonlinear adaptive control scheme yields asymptotic convergence of the vehicle to the reference trajectory, in the presence of parametric uncertainties. The stability of the presented control laws is proved in the sense of Lyapunov theory and Barbalat׳s lemma. Efficiency of presented controller using saturation functions is verified through comparing numerical simulations of both controllers.
Resumo:
We carried out a discriminant analysis with identity by descent (IBD) at each marker as inputs, and the sib pair type (affected-affected versus affected-unaffected) as the output. Using simple logistic regression for this discriminant analysis, we illustrate the importance of comparing models with different number of parameters. Such model comparisons are best carried out using either the Akaike information criterion (AIC) or the Bayesian information criterion (BIC). When AIC (or BIC) stepwise variable selection was applied to the German Asthma data set, a group of markers were selected which provide the best fit to the data (assuming an additive effect). Interestingly, these 25-26 markers were not identical to those with the highest (in magnitude) single-locus lod scores.
Resumo:
In an estuary, mixing and dispersion resulting from turbulence and small scale fluctuation has strong spatio-temporal variability which cannot be resolved in conventional hydrodynamic models while some models employs parameterizations large water bodies. This paper presents small scale diffusivity estimates from high resolution drifters sampled at 10 Hz for periods of about 4 hours to resolve turbulence and shear diffusivity within a tidal shallow estuary (depth < 3 m). Taylor's diffusion theorem forms the basis of a first order estimate for the diffusivity scale. Diffusivity varied between 0.001 – 0.02 m2/s during the flood tide experiment. The diffusivity showed strong dependence (R2 > 0.9) on the horizontal mean velocity within the channel. Enhanced diffusivity caused by shear dispersion resulting from the interaction of large scale flow with the boundary geometries was observed. Turbulence within the shallow channel showed some similarities with the boundary layer flow which include consistency with slope of 5/3 predicted by Kolmogorov's similarity hypothesis within the inertial subrange. The diffusivities scale locally by 4/3 power law following Okubo's scaling and the length scale scales as 3/2 power law of the time scale. The diffusivity scaling herein suggests that the modelling of small scale mixing within tidal shallow estuaries can be approached from classical turbulence scaling upon identifying pertinent parameters.