45 resultados para Lunar eclipses.
Resumo:
Greater than 750 individual particles have now been selected from collection flags housed in the JSC Cosmic Dust Curatorial Facility and most have been documented in the Cosmic Dust Catalogs [1]. As increasing numbers of particles are placed in Cosmic Dust Collections, and a greater diversity of particles are introduced to the stratosphere through natural and man-made processes (e.g. decaying orbits of space debris [2]), there is an even greater need for a classification scheme to encompass all stratospheric particles rather than only extraterrestrial particles. The fundamental requirements for a suitable classification scheme have been outlined in earlier communications [3,4]. A quantitative survey of particles on collection flag W7017 indicates that there is some bias in the number of samples selected within a given category for the Cosmic Dust Catalog [5]. However, the sample diversity within this selection is still appropriate for the development of a reliable classification scheme. In this paper, we extend the earlier works on stratospheric particle classification to include particles collected during the period May 1981 to November 1983.
Resumo:
Fine-grained matrices in carbonaceous chondrites and small, micron-sized inclusions in achondrites can be characterized effectively using high resolution transmission electron microscopy (HRTEM).
Resumo:
Recent studies of C2 carbonaceous chondrite matrices using high resolution transmission electron microscopy (HRTEM)have shown that structural details of the matrix minerals can be imaged [1-4]. The Murchison and Mighei matrices contain minerals having ordered and disordered mixed-layer structures [1,3,4] in addition to chrysotile- and lizardite-type structures [2].
Resumo:
Filamentary single crystals, blades, sheets, euhedral crystals and powders may form by vapor phase condensation depending on the supersauration conditions in the vapor with respect to the condensing species [1]. Filamentary crystal growth requires the operation of an axial screw dislocation [2]. A Vapor-Liquid-Solid (VLS) mechanism may also produce filamentary single crystals, ribbons and blades. The latter two morphologies are typically twinned. Crystals grown by this mechanism do not require the presence of an axial screw dislocation. Impurities may either promote or inhibit crystal growth [3]. The VLS mechanism allows crystals to grow at small supersaturation of the vapor. Thin enstatite blades, ribbons and sheets have been observed in chondritic porous Interplanetary Dust Partics (IDP's) [4, 5]. The requisite screw dislocation for vapor phase condensation [1] has been observed in these enstatite blades [4]. Bradley et al. [4] suggest that these crystals are primary vapor phase condensates which could have formed either in the solar nebula or in presolar environments. These observations [4,5] are significant in that they may provide a demonstrable link to theoretical predictions: viz. that in the primordial solar nebula filamentary condensates could cluster into 'lint balls' and form the predecessors to comets [6].
Resumo:
A recent NASA program to collect stratospheric dust particles using high-flying WB57 aircraft has made available many more potential candidates for the study of extraterrestrial materials. This preliminary report provides an interpretation of the types of particles returned from one flag (W7017) collected in August, 1981 using a subset of 81 allocated particles. This particular collection period is after the Mt. St. Helen's eruptions. Therefore, the flag may contain significant quantities of volcanic debris in addition to the expected terrestrial contaminants [1]. All particles were mounted on nucleopore filters and have been examined using a modified JEOL100CX analytical electron microscope. For most of the particles, X-ray energy dispersive spectra and images were obtained at 40kV on samples which have not received any conductive coating. However, in order to improve resolution (to ~30A) some images are recorded at 100kV. In addition, 16 samples have been coated with a thin layer (<50A) of Au/Pd.
Resumo:
The controversy on how to interpret the ages of lunar highland breccias has recently been discussed by James [1]. Are the measured ages testimony of true events in lunar history; do they represent the age of the ancient crustal rocks, mixed ages of unequilibrated matrix-phenocryst relationships, or merely thermal events subsequent to the formational event ? It is certain from analyses of terrestrial impact melt breccias that the melt matrix of whole impact melt sheets is isotopically equilibrated due to the extensive mixing process of the early cratering stage [2,3]. It has been shown that isotopic equilibration takes place between impact melt matrix and target rock clasts therein, with the intensity of isotopic exchange depending on the degree of shock metamorphism, thermal metamorphism and the size of the clasts [4]. Therefore, impact melt breccias - if they are relatively clast-poor and mineralogically well studied - can be considered to be the most reliable source for information on the impact history of the lunar highland.
Resumo:
An important subset of extraterrestrial particles that reach the Earth's stratosphere include the so-called Chondritic Porous Aggregates (CPA's) [1-3]. In general, CPA's have a fluffy morphology and consist of numerous (>104)subparticles that are often <100A in size [4]. Mineral species in CPA's include Mg-rich pyroxene and olivine, Fe- and (Fe,Ni)-sulphides, taenite, Fe,Ni-carbides, magnetite, Ti-metal, a Bi-phase (metal or oxide), and variable amounts of carbonaceous material [1, 5-7]. Hydrated silicates are rare in CPA's and are limited to aggregates that have not been severely altered (thermo-metamorphosed) during atmospheric entry [8]. The presence of hydrated silicates in one cosmic dust particle was established by X-ray diffraction [2] and has been inferred in others by infra-red spectroscopy [8]. If CPA's are cometary, their mineralogy and morphology suggest that at least two episodes of aggregation occurred and that variations in porosity may be related to local differences in ice-to-dust ratio [3].
Resumo:
Collections of solid particles from the Earths' stratosphere have been a significant part of atmospheric research programs since 1965 [1], but it has only been in the past decade that space-related disciplines have provided the impetus for a continued interest in these collections. Early research on specific particle types collected from the stratosphere established that interplanetary dust particles (IDP's) can be collected efficiently and in reasonable abundance using flat-plate collectors [2-4]. The tenacity of Brownlee and co-workers in this subfield of cosmochemistry has led to the establishment of a successful IDP collection and analysis program (using flat-plate collectors on high-flying aircraft) based on samples available for distribution from Johnson Space Center [5]. Other stratospheric collections are made, but the program at JSC offers a unique opportunity to study well-documented, individual particles (or groups of particles) from a wide variety of sources [6]. The nature of the collection and curation process, as well as the timeliness of some sampling periods [7], ensures that all data obtained from stratospheric particles is a valuable resource for scientists from a wide range of disciplines. A few examples of the uses of these stratospheric dust collections are outlined below.
Resumo:
Table of Contents “your darkness also/rich and beyond fear”: Community Performance, Somatic Poetics and the Vessels of Self and Other - Petra Kuppers. "So what will you do on the plinth?”: A Personal Experience of Disclosure during Antony Gormley’s "One & Other" Project - Jill Francesca Dowse. Food Confessions: Disclosing the Self through the Performance of Food - Jenny Lawson Participation Cartography: The Presentation of Self in Spatio-Temporal Terms - Luis Carlos Sotelo-Castro Disclosure in Biographically-Based Fiction: The Challenges of Writing Narratives Based on True Life Stories - Donna Lee Brien. Closure through Mock-Disclosure in Bret Easton Ellis’s Lunar Park - Jennifer Anne Phillips. Disclosing the Ethnographic Self - Christine Lohmeier Celebrity Twitter: Strategies of Intrusion and Disclosure in the Age of Technoculture - Nick Muntean, Anne Helen Petersen. “Just Emotional People”? Emo Culture and the Anxieties of Disclosure - Michelle Phillipov.
Resumo:
For future planetary robot missions, multi-robot-systems can be considered as a suitable platform to perform space mission faster and more reliable. In heterogeneous robot teams, each robot can have different abilities and sensor equipment. In this paper we describe a lunar demonstration scenario where a team of mobile robots explores an unknown area and identifies a set of objects belonging to a lunar infrastructure. Our robot team consists of two exploring scout robots and a mobile manipulator. The mission goal is to locate the objects within a certain area, to identify the objects, and to transport the objects to a base station. The robots have a different sensor setup and different capabilities. In order to classify parts of the lunar infrastructure, the robots have to share the knowledge about the objects. Based on the different sensing capabilities, several information modalities have to be shared and combined by the robots. In this work we propose an approach using spatial features and a fuzzy logic based reasoning for distributed object classification.
Resumo:
Design Proposal for the Blue Lunar Support Hub The conceptual design of a space station is one of the most challenging tasks in aerospace engineering. The history of the space station Mir and the assembly of the International Space Station demonstrate that even within the assembly phase quick solutions have to be found to cope with budget and technical problems or changing objectives. This report is the outcome of the conceptual design of the Space Station Design Workshop (SSDW) 2007, which took place as an international design project from the 16th to the 21st of July 2007 at the Australian Centre for Field Robotics (ACFR), University of Sydney, Australia. The participants were tasked to design a human-tended space station in low lunar orbit (LLO) focusing on supporting future missions to the moon in a programmatic context of space exploration beyond low Earth orbit (LEO). The design included incorporating elements from systems engineering to interior architecture. The customised, intuitive, rapid-turnaround software tools enabled the team to successfully tackle the complex problem of conceptual design of crewed space systems. A strong emphasis was put on improving the integration of the human crew, as it is the major contributor to mission success, while always respecting the boundary conditions imposed by the challenging environment of space. This report documents the methodology, tools and outcomes of the Space Station Design Workshop during the SSDW 2007. The design results produced by Team Blue are presented.
Resumo:
Temporal and environmental variation in vocal activity can provide information on avian behaviour and call function not available to short-term experimental studies. Intersexual differences in this variation can provide insight into selection effects. Yet factors influencing vocal behaviour have not been assessed in many birds, even those monitored by acoustic methods. This applies to the New Zealand kiwi (Apterygidae), for which call censuses are used extensively in conservation monitoring, yet which have poorly understood acoustic ecology. We investigated little spotted kiwi Apteryx owenii vocal behaviour over 3 yr, measuring influences on vocal activity in both sexes from time of night, season, weather conditions and lunar cycle. We tested hypotheses that call rate variation reflects call function, foraging efficiency, historic predation risk and variability in sound transmission, and that there are inter-sexual differences in call function. Significant seasonal variation showed that vocalisations were important in kiwi reproduction, and inter-sexual synchronisation of call rates indicated that contact, pair-bonding or resource defence were key functions. All weather variables significantly affected call rates, with elevated calling during increased humidity and ground moisture indicating a relation between vocal activity and foraging conditions. A significant decrease in calling activity on cloudy nights, combined with no moonlight effect, suggests an impact of light pollution in this species. These influences on vocal activity provide insight into kiwi call function, have direct consequences for conservation monitoring of kiwi, and have wider implications in understanding vocal behaviour in a range of nocturnal birds
Resumo:
A technique is described for calculating the brightness of the atmosphere of the Earth that shines into the Earth’s umbra during a total lunar eclipse making the Moon red. This ‘Rim of Fire’ is due to refracted un scattered light from all the sunrises and sunsets rimming the Earth. In this article, a photograph of the totally eclipsed Moon was compared with the Full Moon and the difference in brightness calculated taking into account the exposure time and ISO setting. The results show that the Full Moon is over 14 000 times brighter than the totally eclipsed Moon. The relative brightness of the eclipsed Moon can be used to estimate that the luminance of Rim of Fire is over 12 trillion watts. The experiment described in this paper would be suitable as a high school or university exercise.
Resumo:
OBJECTIVE To monitor the seasonal body composition alterations in 18 lightweight rowers (six females, 12 males) across a rowing season incorporating preseason, early competition, competition, and postseason. METHODS Subject age was 23.1 (SD 4.5) years, height 170.8 (5.6) cm (female, 23.5 (3.5) years, 180.5 (2.7) cm (male). Body weight, fat mass, and fat-free mass (FFM) were assessed using dual energy x ray absorptiometry (DXA-L Lunar) and skinfold techniques. Weight control techniques were documented before major regattas by a questionnaire. RESULTS Female body weight was reduced from 61.3 (2.9) to 57.0 (1.1) kg (5.9%), while male body weight was reduced from 75.6 (3.1) to 69.8 (1.6) kg (7.8%) preseason to competition season respectively. These body weight reductions were mirrored by a significant reduction in fat mass as indicated by the sum of skinfolds [female seven sites: 80.9 (8.1) to 68.2 (11.8) mm; male eight sites: 54.2 (8.7) to 41.8 (4.8) mm], percentage body fat [female 22.1 (1.0) to 19.7 (2.4)%; male 10.0 (0.9) to 7.8 (0.8)%], and total fat [female 12.5 (5.2) to 10.9 (1.4) kg; male 7.3 (1.9) to 5.6 (1.8) kg] (DXA). In contrast, no changes were observed in FFM despite a season of intensive rowing training. Seasonal body weight control was achieved through reduced total energy and dietary fat intakes. Acute body weight reductions were achieved by exercise in 73.3% of participants, food restriction in 71.4%, and fluid restrictions in 62.9%. CONCLUSIONS Seasonal body weight alterations in lightweight rowers are in response to a significant reduction in fat mass. However, the weight restrictions appear to be limiting an increase in FFM which could be beneficial to rowing performance.