57 resultados para Liver Transplant
Resumo:
The presence of theta-class glutathione S-transferase (GST) in marmoset monkey liver cytosol was investigated. An anti-peptide antibody targeted against the C-terminus of rGSTT1 reacted with a single band in marmoset liver cytosol that corresponded to a molecular weight of 28 kDa. The intensity of the immunoreactive band was not affected by treatment of marmoset monkeys with 2,3,7,8-tetrachlorodibenzo-p-dioxin, phenobarbitone, rifampicin or clofibric acid. Similarly, activity towards methyl chloride (MC) was unaffected by these treatments. However, GST activity towards 1,2-epoxy3-(p- nitrophenoxy)-propane (EPNP) was increased in marmosets treated with phenobarbitone (2.6-fold) and rifampicin (2.6-fold), activity towards dichloromethane (DCM) was increased by 50% after treatment of marmosets with clofibric acid, and activity towards 1-chloro-2,4-dinitrobenzene (CDNB) was raised slightly (30-42% increases) after treatment with phenobarbitone, rifampicin or clofibric acid. Compared with humans, marmoset liver cytosol GST activity towards DCM was 18-fold higher, activity towards MC was 7 times higher and activity towards CDNB was 4 times higher. Further, EPNP activity was clearly detectable in marmoset liver cytosol samples, but was undetectable in human samples. Immunoreactive marmoset GST was partially purified by affinity chromatography using hexylglutathione-Sepharose and Orange A resin. The interaction of immunoreactive marmoset GST was similar to that found previously for rat and human GSTT1, suggesting that this protein is also a theta class GST. However, unlike rat GSTT1, the marmoset enzyme was not the major catalyst of EPNP conjugation. Instead, immunoreactivity was closely associated with activity towards MC. In conclusion, these results provide evidence for the presence of theta-class GST in the marmoset monkey orthologous to rGSTT1 and hGSTT1.
Resumo:
Glutathione transferase (GST) GSTT1-1 is involved in the biotransformation of several chemicals widely used in industry, such as butadiene and dichloro methane DCM. The polymorphic hGSTT1-1 may well play a role in the development of kidney tumours after high and long-term occupational exposure against trichloroethylene. Although several studies have investigated the association of this polymorphism with malignant diseases little is known about its enzyme activity in potential extrahepatic target tissues. The known theta-specific substrates methyl chloride (MC) dichloromethane and 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP) were used to assay GSTT1-1 activity in liver and kidney of rats, mice, hamsters and humans differentiating the three phenotypes (non-conjugators, low conjugators, high conjugators) seen in humans. In addition GSTT1-1 activity towards MC and DCM was determined in human erythrocytes. No GSTT1-1 activity was found in any tissue of non-conjugators (NC). In all organs high conjugators (HC) showed twofold higher activity towards MC and DCM than low conjugators (LC). The activity in human samples towards EPNP was too close to the detection limit to differentiate between the three conjugator phenotypes. GSTT1-1 activity towards MC was two to seven-times higher in liver cytosol than in kidney cytosol. The relation for MC between species was identical in both organs: mouse > HC > rat > LC > hamster > NC. In rats, mice and hamsters GSTT1-1 activity in liver cytosol towards DCM was also two to seven-times higher than in the kidney cytosol. In humans this activity was twice as high in kidney cytosol than in liver cytosol. The relation between species was mouse > rat > HC > LC > hamster > NC for liver, but mouse > HC > LC/rat > hamster/NC for kidney cytosol. The importance to heed the specific environment at potential target sites in risk assessment is emphasized by these results.
Resumo:
Glutathione transferases (GSTs) catalyzing the conjugation of glutathione with electrophilic substrates are important enzymes in the metabolism of xenobiotics. Several isozymes exhibit polymorphisms in humans. The two deletion polymorphisms of hGSTM1 and hGSTT1 result in total loss of enzyme activity in homozygous null genotype (GSTM1*0 and GSTT1*0 respectively) individuals (Seidegård et al. 1988; Pemble et al. 1994). Individuals that are heterozygous for hGSTT1 show distinctly lower enzyme activities than individuals carrying two functional alleles of hGSTT1 (Wiebel et al. 1996). A similar effect is conceivable for the hGSTM1 polymorphism but has not been verified so far.
Antibodies against human herpesvirus 8 in South African renal transplant recipients and blood donors
Resumo:
Background: Multipotent mesenchymal stromal cells suppress T-cell function in vitro, a property that has underpinned their use in treating clinical steroid-refractory graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. However the potential of mesenchymal stromal cells to resolve graft-versus-host disease is confounded by a paucity of pre-clinical data delineating their immunomodulatory effects in vivo. Design and Methods: We examined the influence of timing and dose of donor-derived mesenchymal stromal cells on the kinetics of graft-versus-host disease in two murine models of graft-versus-host disease (major histocompatibility complex-mismatched: UBI-GFP/BL6 [H-2b]→BALB/c [H-2d] and the sibling transplant mimic, UBI-GFP/BL6 [H-2b]→BALB.B [H-2b]) using clinically relevant conditioning regimens. We also examined the effect of mesenchymal stromal cell infusion on bone marrow and spleen cellular composition and cytokine secretion in transplant recipients. Results: Despite T-cell suppression in vitro, mesenchymal stromal cells delayed but did not prevent graft-versus-host disease in the major histocompatibility complex-mismatched model. In the sibling transplant model, however, 30% of mesenchymal stromal cell-treated mice did not develop graft-versus-host disease. The timing of administration and dose of the mesenchymal stromal cells influenced their effectiveness in attenuating graft-versus-host disease, such that a low dose of mesenchymal stromal cells administered early was more effective than a high dose of mesenchymal stromal cells given late. Compared to control-treated mice, mesenchymal stromal cell-treated mice had significant reductions in serum and splenic interferon-γ, an important mediator of graft-versus-host disease. Conclusions: Mesenchymal stromal cells appear to delay death from graft-versus-host disease by transiently altering the inflammatory milieu and reducing levels of interferon-γ. Our data suggest that both the timing of infusion and the dose of mesenchymal stromal cells likely influence these cells’ effectiveness in attenuating graft-versus-host disease.
Resumo:
Background Preparative myeloablative conditioning regimens for allogeneic hematopoietic stem-cell transplantation (HSCT) may control malignancy and facilitate engraftment but also contribute to transplant related mortality, cytokine release, and acute graft-versus-host disease (GVHD). Reduced intensity conditioning (RIC) regimens have decreased transplant related mortality but the incidence of acute GVHD, while delayed, remains unchanged. There are currently no in vivo allogeneic models of RIC HSCT, limiting studies into the mechanism behind RIC-associated GVHD. Methods We developed two RIC HSCT models that result in delayed onset GVHD (major histocompatibility complex mismatched (UBI-GFP/BL6 [H-2b]→BALB/c [H-2d]) and major histocompatibility complex matched, minor histocompatibility mismatched (UBI-GFP/BL6 [H-2b]→BALB.B [H-2b])) enabling the effect of RIC on chimerism, dendritic cell (DC) chimerism, and GVHD to be investigated. Results In contrast with myeloablative conditioning, we observed that RIC-associated delayed-onset GVHD is characterized by low production of tumor necrosis factor-α, maintenance of host DC, phenotypic DC activation, increased T-regulatory cell numbers, and a delayed emergence of activated donor DC. Furthermore, changes to the peritransplant milieu in the recipient after RIC lead to the altered activation of DC and the induction of T-regulatory responses. Reduced intensity conditioning recipients suffer less early damage to GVHD target organs. However, as donor cells engraft, activated donor DC and rising levels of tumor necrosis factor-α are associated with a later onset of severe GVHD. Conclusions Delineating the mechanisms underlying delayed onset GVHD in RIC HSCT recipients is vital to improve the prediction of disease onset and allow more targeted interventions for acute GVHD.
Resumo:
Aim Reduced bone mineral density, impaired cardiovascular fitness, and increased risk of obesity are well-known late effects of Hematopoietic Stem Cell Transplantation (HSCT) in survivors of childhood cancer. These comorbidities can be mitigated through physical activity and limiting screen-time (ST). This study aims to increase the understanding of physical activity and ST behaviours for children following HSCT. Method Children were recruited from two oncology follow-up clinics and completed a questionnaire on their physical activity levels and screen-time. Children were classified as short (≤2yrs) and long term (>2yrs) survivors. Results Fifty-eight children were eligible, of whom forty children age 6 to 18 years (60% males) participated in the study. Less than half (47.5%) met the daily recommendations for physical activity and one third met the ST recommendations. Late survivors reported higher daily physical activity and less ST than early survivors. Among late survivors, females reported higher daily physical activity and less ST than males. Conclusions Our findings suggest that the majority of children following HSCT were not sufficiently active and had excessive screen-time; however this was comparable to healthy populations. Appropriately designed physical activity and screen-time intervention programs should be explored early following transplant for children undergoing HSCT.
Resumo:
Aims The aim of the study was to evaluate the significance of total bilirubin, aspartate transaminase (AST), alanine transaminase and gamma-glutamyltransferase (GGT) for predicting outcome in sepsis-associated cholestasis. Methods: A retrospective cohort review of the hospital records was performed in 181 neonates admitted to the Neonatal Care Unit. A comparison was performed between subjects with low and high liver values based on cut-off values from ROC analysis. We defined poor prognosis to be when a subject had prolonged cholestasis of more than 3.5 months, developed severe sepsis, septic shock or had a fatal outcome. Results: The majority of the subjects were male (56%), preterm (56%) and had early onset sepsis (73%). The poor prognosis group had lower initial values of GGT compared with the good prognosis group (P = 0.003). Serum GGT (cut-off value of 85.5 U/L) and AST (cut-off value of 51 U/L) showed significant correlation with the outcome following multivariate analysis. The odds ratio (OR) of low GGT and high AST were OR 4.3 (95% CI:1.6 to11.8) and OR 2.9 (95% CI:1.1 to 8), respectively, for poor prognosis. In subjects with normal AST values, those with low GGT value had relative risk of 2.52 (95% CI:1.4 to 3.5) for poorer prognosis compared with those with normal or high GGT. Conclusion: Serum GGT and AST values can be used to predict the prognosis of patients with sepsis-associated cholestasis
Resumo:
There have been recent improvements in the clinical understanding and definition of the major types of autoimmune liver disease. However, still lacking is knowledge of their prevalence and pathogenesis. Three areas of study are in progress in our laboratory. First, in type 1 autoimmune hepatitis, the search continues to identify a liver/disease-specific autoantigenic reactant. Using hepatocyte membrane preparations, immunoblotting has underlined the problem of distinguishing, among multiple reactants, those that may be causally rather than consequentially related to hepatocellular damage. Second, in primary biliary cirrhosis (PBC), the need for population screening to ascertain prevalence and detect preclinical cases can be met by a rapid automated procedure for detection, by specific enzyme inhibition in microtitre wells, of antibody (anti-M2) to the pyruvate dehydrogenase complex E2 subunit (PDC-E2). Third, the structure of the conformational epitope within the inner lipoyl domain of PDC-E2 is being investigated by screening random phage-displayed peptide libraries using PBC sera. This has yielded phage clones in which the sequence of the peptide insert portrays the structure of this epitope, as judged by clustering of PBC-derived sequences to particular branches of a guide-tree that shows relatedness of peptides, and by reactivity of selected phage clones with anti-PDC-E2. Thus phage display identifies a peptide 'mimotope' of the antibody epitope in the inner lipoyl domain of PDC-E2.
Resumo:
Objective People with chronic liver disease, particularly those with decompensated cirrhosis, experience several potentially debilitating complications that can have a significant impact on activities of daily living and quality of life. These impairments combined with the associated complex treatment mean that they are faced with specific and high levels of supportive care needs. We aimed to review reported perspectives, experiences and concerns of people with chronic liver disease worldwide. This information is necessary to guide development of policies around supportive needs screening tools and to enable prioritisation of support services for these patients. Design Systematic searches of PubMed, MEDLINE, CINAHL and PsycINFO from the earliest records until 19 September 2014. Data were extracted using standardised forms. A qualitative, descriptive approach was utilised to analyse and synthesise data. Results The initial search yielded 2598 reports: 26 studies reporting supportive care needs among patients with chronic liver disease were included, but few of them were patient-reported needs, none used a validated liver disease-specific supportive care need assessment instrument, and only three included patients with cirrhosis. Five key domains of supportive care needs were identified: informational or educational (eg, educational material, educational sessions), practical (eg, daily living), physical (eg, controlling pruritus and fatigue), patient care and support (eg, support groups), and psychological (eg, anxiety, sadness). Conclusions While several key domains of supportive care needs were identified, most studies included hepatitis patients. There is a paucity of literature describing the supportive care needs of the chronic liver disease population likely to have the most needs—namely those with cirrhosis. Assessing the supportive care needs of people with chronic liver disease have potential utility in clinical practice for facilitating timely referrals to support services.
Resumo:
Malnutrition is common in end-stage liver disease, but a correction after transplantation is expected. Body cell mass (BCM) assessment using total body potassium (TBK) measurements is considered the gold standard for assessing nutritional status. The aim of this study was to examine the BCM and, therefore, nutritional status of long-term survivors after childhood liver transplantation. © 2014 American Association for the Study of Liver Diseases.
Resumo:
Background: Better understanding of body composition and energy metabolism in pediatric liver disease may provide a scientific basis for improved medical therapy aimed at achieving optimal nutrition, slowing progression to end-stage liver disease (ESLD), and improving the outcome of liver transplantation. Methods: Twenty-one children less than 2 years of age with ESLD awaiting liver transplantation and 15 healthy, aged-matched controls had body compartment analysis using a four compartment model (body cell mass, fat mass, extracellular water, and extracellular solids). Subjects also had measurements of resting energy expenditure (REE) and respiratory quotient (RQ) by indirect calorimetry. Nine patients and 15 control subjects also had measurements of total energy expenditure (TEE) using doubly labelled water. Results: Mean weights and heights were similar in the two groups. Compared with control subjects, children with ESLD had higher relative mean body cell mass (33 ± 2% vs 29 ± 1% of body weight, P < 0.05), but had similar fat mass, extracellular water, and extracellular solid compartments (18% vs 20%, 41% vs 38%, and 7% vs 13% of body weight respectively). Compared with control subjects, children with ESLD had 27% higher mean REE/body weight (0.285 ± 0.013 vs 0.218. ± 0.013 mJ/kg/24h, P < 0.001), 16% higher REE/unit cell mass (P < 0.05); and lower mean RQ (P < 0.05). Mean TEE of patients was 4.70 ± 0.49 mJ/24h vs 3.19 ± 0.76 in controls, (P < 0.01). Conclusions: In children, ESLD is a hypermetabolic state adversely affecting the relationship between metabolic and non-metabolic body compartments. There is increased metabolic activity within the body cell mass with excess lipid oxidation during fasting and at rest. These findings have implications for the design of appropriate nutritional therapy.
Resumo:
Malnutrition is a common problem in children with end-stage liver disease (ESLD), and accurate assessment of nutritional status is essential in managing these children. In a retrospective study, we compared nutritional assessment by anthropometry with that by body composition. We analyzed all consecutive measurements of total body potassium (TBK, n = 186) of children less than 3 years old with ESLD awaiting transplantation found in our database. The TBK values obtained by whole body counting of 40K were compared with reference TRK values of healthy children. The prevalence of malnutrition, as assessed by weight (weight Z score < -2) was 28%, which was significantly lower (chi-square test, p < 0.0001) than the prevalence of malnutrition (76%) assessed by TBK (< 90% of expected TRK for age). These results demonstrated that body weight underestimated the nutritional deficit and stressed the importance of measuring body composition as part of assessing nutritional status of children with ESLD.