220 resultados para LB1501 Primary Education
Resumo:
Robotics has created opportunities for educators to teach concepts across Science, Technology, Engineering, and Mathematics (STEM). This is one of the reasons robotics is becoming increasingly common in primary and secondary classrooms in Australia. To enable pre-service teachers to design engaging STEM activities that incorporate these technologies, robotics is part of the teaching program in the primary education degree at Queensland University of Technology (QUT). A number of pre-service teachers also choose to extend their abilities by implementing robotics activities on field studies, in schools on a voluntary basis, and in outreach activities such as the Robotics@QUT project. The Robotics@QUT project is a support network developed to build professional knowledge and capacity of classroom teachers in schools from a low SES area, engaging in robotics-based STEM activities. Professional Development (PD) workshops are provided to teachers in order to build their knowledge and confidence in implementing robotics activities in their classrooms, loan kits are provided, and pre-service teacher visits arranged to provide the teachers with on-going support. A key feature of the project is the partnerships developed between the teachers and the pre-service teachers involved in the project. The purpose of this study was to ascertain how the teachers in the project perceived the value of the PD workshops and the pre-service teachers’ involvement and what the benefits of the involvement in the project were for the pre-service teachers. Seventeen teachers completed a five-point (1-5) likert scale questionnaire regarding their involvement in the Robotics@QUT project. Teachers’ responses on the value of the project and the pre-service teacher support highlighted the benefits of the partnerships formed and provided insights into the value of the support provided by the pre-service teachers. This paper also describes one pre-service teacher’s experience with the project and the perceived benefits from being involved.
Resumo:
This paper reports and discusses a contentious result from an Australia-wide study of the influences on students' decisions about taking senior science subjects. As part of the Choosing Science study (Lyons and Quinn 2010) 3759 Year 10 students were asked to indicate which stage of their schooling (lower primary, upper primary, lower secondary, middle secondary) they had most enjoyed learning science. Crosstabulations of responses revealed that around 78% of students indicated that they had enjoyed learning science more in secondary than in primary school, and 55% enjoyed it the most during Years 9 and 10. The perception that school science was more enjoyable in high school was also found among students who did not intend taking science in Year 11, though to a lesser extent. These findings are unexpected and significant, challenging the prevailing view that enjoyment of school science steadily declines after primary school. The paper elaborates on the findings and suggests that the different conclusions arrived at by studies in this field may be due to the different methodologies employed.
Resumo:
Information and Communication Technology (ICT) has been embraced with hope and optimism in both developing and developed countries. While in the developed countries most citizens have access to one or many of the devices which utilize this technology (e.g. desktop, laptop, tablet, mobile phone), in developing countries this “luxury” can only be afforded by a privileged few. The use of these technologies in primary schools in developing countries is low. This is due to the fact that there are other bigger issues that some of these countries have to grapple with such as meeting the basic health and education needs of its citizens. Quality primary education and global development partnerships are two of the eight Millennium Development Goals of the United Nations (UNDP, 2012). Many Governments, NGO’s, service organizations, and individuals in developing countries are always looking at ways in which the disparity (not just in terms of ICT) can be narrowed. There has to be a greater collaboration between stakeholders in developing and developed countries (Mutonyi & Norton, 2007). How do stakeholders from developed countries engage with partners in developing countries to deliver meaningful and relevant outcomes for primary school students using ICT? As a first step getting the key stakeholders on side is critical. In the Fijian context, schools are managed and run by committees who are members of the community. Therefore, getting the committee on side together with the head-teachers and teachers is critical. Conversations about teaching and learning with technology can then follow with greater ease. The sustainability of any innovative approaches is also an essential element of this equation. Through this lens, this chapter investigates how ICT can be implemented in primary schools in Fiji. It proposes a three-layered approach which focuses on: (1) the community, school leadership, and teachers; (2) content, pedagogy, and technology, and (3) sustainability.
Resumo:
The world and its peoples are facing multiple, complex challenges and we cannot continue as we are (Moss, 2010). Earth‘s “natural capital” - nature‘s ability to provide essential ecosystem services to stabilize world climate systems, maintain water quality, support secure food production, supply energy needs, moderate environmental impacts, and ensure social harmony and equity – is seriously compromised (Gough, 2005; Hawkins, Lovins & Lovins, 1999). To further summarize, current rates of resource consumption by the global human population are unsustainable (Kitzes, Peller, Goldfinger & Wackernagel, 2007) for human and non-human species, and for future generations. Further, continuing growth in world population and global political commitment to growth economics compounds these demands. Despite growing recognition of the serious consequences for people and planet, little consideration is given, within most nations, to the social and environmental issues that economic growth brings. For example, Australia is recognised as one of the developed countries most vulnerable to the impacts of climate change. Yet, to date, responses (such as carbon pricing) have been small-scale, fragmented, and their worth disputed, even ridiculed. This is at a time referred to as ‘the critical decade’ (Hughes & McMichael, 2011) when the world’s peoples must make strong choices if we are to avert the worst impacts of climate change.
Resumo:
Research shows that the beliefs individuals hold about knowledge and knowing (epistemic beliefs) influence learning approaches and outcomes. However, little is known about the nature of children’s epistemic beliefs and how best to measure these. In this pilot study, 11 Australian children (in Grade 4 or Grade 6) were asked to ‘draw, write and tell’ about their epistemic beliefs using drawings, written responses and interviews respectively. Drawings were analysed, with the majority of children depicting external, one-way sources of knowledge. The written statements and interviews were analysed using inductive thematic analysis, showing that children predominantly described knowledge acquisition as processes of task-based learning. Interviews also enabled children to describe a wider range of views. These results indicate that the methodological combination of ‘draw, write and tell’ allowed for a deeper understanding of the children’s epistemic beliefs which holds implications for future research.
Complimentary collaborations: Teachers and researchers co-developing best practices in art education
Resumo:
Australia is currently experiencing a huge cultural shift as it moves from a State-based curriculum, to a national education system. The Australian State-based bodies that currently manage teacher registration, teacher education course accreditation, curriculum frameworks and syllabi are often complex organisations that hold conflicting ideologies about education and teaching. The development of a centralised system, complete with a single accreditation body and a national curriculum can be seen as a reaction to this complexity. At the time of writing, the Australian Curriculum is being rolled out in staggered phases across the states and territories of Australia. Phase one has been implemented, introducing English, Mathematics, History and Science. Subsequent phases (Humanities and Social Sciences, the Arts, Technologies, Health and Physical Education, Languages, and year 9-10 work studies) are intended to follow. Forcing an educational shift of this magnitude is no simple task; not least because the States and Territories have and continue to demonstrate varying levels of resistance to winding down their own curricula in favour of new content with its unfamiliar expectations and organisations. The full implementation process is currently far from over, and far from being fully resolved. The Federal Government has initiated a number of strategies to progress the implementation, such as the development of the Australian Institute for Teaching and School Leadership (AITSL) to aid professional educators to implement the new curriculum. AITSL worked with professional and peak specialist bodies to develop Illustrations of Practice (hereafter IoP) for teachers to access and utilise. This paper tells of the building of one IoP, where a graduate teacher and a university lecturer collaborated to construct ideas and strategies to deliver visual arts lessons to early childhood students in a low Socio- Economic Status [SES] regional setting and discusses the experience in terms of its potential for professional learning in art education.
Resumo:
Counselling children often requires the use of supplementary strategies in order to interest and engage the child in the therapeutic process. One such strategy is the Metaphorical Fruit Tree (MFT); an art metaphor suited to exploring and developing self-concept. Quantitative and qualitative data was used to explore the relationships between children’s ability to use metaphor, age, gender, and level of emotional competence (N = 58). Quantitative and qualitative analyses revealed a significant negative relationship between self-reported emotional competence and ability to use the MFT. It is proposed that children rely on different processes to understand self and as children’s ability to cognitively report on their emotional capabilities via the Emotional Competence Questionnaire (ECQ) increases, their ability to report creatively on those capabilities via the MFT is undermined. It is suggested that the MFT may be used, via creative processes and as an alternative to cognitive processes, to increase understanding and awareness of intrapersonal and interpersonal concepts of self in the child during counselling.
Resumo:
This paper describes an approach to introducing fraction concepts using generic software tools such as Microsoft Office's PowerPoint to create "virtual" materials for mathematics teaching and learning. This approach replicates existing concrete materials and integrates virtual materials with current non-computer methods of teaching primary students about fractions. The paper reports a case study of a 12-year-old student, Frank, who had an extremely limited understanding of fractions. Frank also lacked motivation for learning mathematics in general and interacted with his peers in a negative way during mathematics lessons. In just one classroom session involving the seamless integration of off-computer and on-computer activities, Frank acquired a basic understanding of simple common equivalent fractions. Further, he was observed as the session progressed to be an enthusiastic learner who offered to share his learning with his peers. The study's "virtual replication" approach for fractions involves the manipulation of concrete materials (folding paper regions) alongside the manipulation of their virtual equivalent (shading screen regions). As researchers have pointed out, the emergence of new technologies does not mean old technologies become redundant. Learning technologies have not replaced print and oral language or basic mathematical understanding. Instead, they are modifying, reshaping, and blending the ways in which humankind speaks, reads, writes, and works mathematically. Constructivist theories of learning and teaching argue that mathematics understanding is developed from concrete to pictorial to abstract and that, ultimately, mathematics learning and teaching is about refinement and expression of ideas and concepts. Therefore, by seamlessly integrating the use of concrete materials and virtual materials generated by computer software applications, an opportunity arises to enhance the teaching and learning value of both materials.
Resumo:
Background: While the relationship between socioeconomic disadvantage and cardiovascular disease (CVD) is well established, the role that traditional cardiovascular risk factors play in this association remains unclear. We examined the association between education attainment and CVD mortality and the extent to which behavioural, social and physiological factors explained this relationship. Methods: Adults (n=38 355) aged 40-69 years living in Melbourne, Australia were recruited in 1990-1994. Subjects with baseline CVD risk factor data ascertained through questionnaire and physical measurement were followed for an average of 9.4 years with CVD deaths verified by review of medical records and autopsy reports. Results: CVD mortality was higher for those with primary education only compared to those who had completed tertiary education, with a hazard ratio (HR) of 1.66 (95% confidence interval [CI] 1.11-2.49) after adjustment for age, country of birth and gender. Those from the lowest educated group had a more adverse cardiovascular risk factor profile compared to the highest educated group, and adjustment for these risk factors reduced the HR to 1.18 (95% CI 0.78-1.77). In analysis of individual risk factors, smoking and waist circumference explained most of the difference in CVD mortality between the highest and lowest education groups. Conclusions: Most of the excess CVD mortality in lower socioeconomic groups can be explained by known risk factors, particularly smoking and overweight. While targeting cardiovascular risk factors should not divert efforts from addressing the underlying determinants of health inequalities, it is essential that known risk factors are addressed effectively among lower socioeconomic groups.
Resumo:
While externally moderated standards-based assessment has been practised in Queensland senior schooling for more than three decades, there has been no such practice in the middle years. With the introduction of standards at state and national levels in these years, teacher judgement as developed in moderation practices is now vital. This paper argues, that in this context of assessment reform, standards intended to inform teacher judgement and to build assessment capacity are necessary but not sufficient for maintaining teacher and public confidence in schooling. Teacher judgement is intrinsic to moderation, and to professional practice, and can no longer remain private. Moderation too is intrinsic to efforts by the profession to realise judgements that are defensible, dependable and open to scrutiny. Moderation can no longer be considered an optional extra and requires system-level support especially if, as intended, the standards are linked to system-wide efforts to improve student learning. In presenting this argument we draw on an Australian Research Council funded study with key industry partners (the Queensland Studies Authority and the National Council for Curriculum and Assessment of the Republic of Ireland). The data analysed included teacher interview data and additional teacher talk during moderation sessions. These were undertaken during the initial phase of policy development. The analysis identified those issues that emerge in moderation meetings that are designed to reach consistent, reliable judgements. Of interest are the different ways in which teachers talked through and interacted with one another to reach agreement about the quality of student work in the application of standards. There is evidence of differences in the way that teachers made compensations and trade-offs in their award of grades, dependent on the subject domain in which they teach. This article concludes with some empirically derived insights into moderation practices as policy and social events.
Resumo:
Curriculum demands continue to increase on school education systems with teachers at the forefront of implementing syllabus requirements. Education is reported frequently as a solution to most societal problems and, as a result of the world’s information explosion, teachers are expected to cover more and more within teaching programs. How can teachers combine subjects in order to capitalise on the competing educational agendas within school timeframes? Fusing curricula requires the bonding of standards from two or more syllabuses. Both technology and ICT complement the learning of science. This study analyses selected examples of preservice teachers’ overviews for fusing science, technology and ICT. These program overviews focused on primary students and the achievement of two standards (one from science and one from either technology or ICT). These primary preservice teachers’ fused-curricula overviews included scientific concepts and related technology and/or ICT skills and knowledge. Findings indicated a range of innovative curriculum plans for teaching primary science through technology and ICT, demonstrating that these subjects can form cohesive links towards achieving the respective learning standards. Teachers can work more astutely by fusing curricula; however further professional development may be required to advance thinking about these processes. Bonding subjects through their learning standards can extend beyond previous integration or thematic work where standards may not have been assessed. Education systems need to articulate through syllabus documents how effective fusing of curricula can be achieved. It appears that education is a key avenue for addressing societal needs, problems and issues. Education is promoted as a universal solution, which has resulted in curriculum overload (Dare, Durand, Moeller, & Washington, 1997; Vinson, 2001). Societal and curriculum demands have placed added pressure on teachers with many extenuating education issues increasing teachers’ workloads (Mobilise for Public Education, 2002). For example, as Australia has weather conducive for outdoor activities, social problems and issues arise that are reported through the media calling for action; consequently schools have been involved in swimming programs, road and bicycle safety programs, and a wide range of activities that had been considered a parental responsibility in the past. Teachers are expected to plan, implement and assess these extra-curricula activities within their already overcrowded timetables. At the same stage, key learning areas (KLAs) such as science and technology are mandatory requirements within all Australian education systems. These systems have syllabuses outlining levels of content and the anticipated learning outcomes (also known as standards, essential learnings, and frameworks). Time allocated for teaching science in obviously an issue. In 2001, it was estimated that on average the time spent in teaching science in Australian Primary Schools was almost an hour per week (Goodrum, Hackling, & Rennie, 2001). More recently, a study undertaken in the U.S. reported a similar finding. More than 80% of the teachers in K-5 classrooms spent less than an hour teaching science (Dorph, Goldstein, Lee, et al., 2007). More importantly, 16% did not spend teaching science in their classrooms. Teachers need to learn to work smarter by optimising the use of their in-class time. Integration is proposed as one of the ways to address the issue of curriculum overload (Venville & Dawson, 2005; Vogler, 2003). Even though there may be a lack of definition for integration (Hurley, 2001), curriculum integration aims at covering key concepts in two or more subject areas within the same lesson (Buxton & Whatley, 2002). This implies covering the curriculum in less time than if the subjects were taught separately; therefore teachers should have more time to cover other educational issues. Expectedly, the reality can be decidedly different (e.g., Brophy & Alleman, 1991; Venville & Dawson, 2005). Nevertheless, teachers report that students expand their knowledge and skills as a result of subject integration (James, Lamb, Householder, & Bailey, 2000). There seems to be considerable value for integrating science with other KLAs besides aiming to address teaching workloads. Over two decades ago, Cohen and Staley (1982) claimed that integration can bring a subject into the primary curriculum that may be otherwise left out. Integrating science education aims to develop a more holistic perspective. Indeed, life is not neat components of stand-alone subjects; life integrates subject content in numerous ways, and curriculum integration can assist students to make these real-life connections (Burnett & Wichman, 1997). Science integration can provide the scope for real-life learning and the possibility of targeting students’ learning styles more effectively by providing more than one perspective (Hudson & Hudson, 2001). To illustrate, technology is essential to science education (Blueford & Rosenbloom, 2003; Board of Studies, 1999; Penick, 2002), and constructing technology immediately evokes a social purpose for such construction (Marker, 1992). For example, building a model windmill requires science and technology (Zubrowski, 2002) but has a key focus on sustainability and the social sciences. Science has the potential to be integrated with all KLAs (e.g., Cohen & Staley, 1982; Dobbs, 1995; James et al., 2000). Yet, “integration” appears to be a confusing term. Integration has an educational meaning focused on special education students being assimilated into mainstream classrooms. The word integration was used in the late seventies and generally focused around thematic approaches for teaching. For instance, a science theme about flight only has to have a student drawing a picture of plane to show integration; it did not connect the anticipated outcomes from science and art. The term “fusing curricula” presents a seamless bonding between two subjects; hence standards (or outcomes) need to be linked from both subjects. This also goes beyond just embedding one subject within another. Embedding implies that one subject is dominant, while fusing curricula proposes an equal mix of learning within both subject areas. Primary education in Queensland has eight KLAs, each with its established content and each with a proposed structure for levels of learning. Primary teachers attempt to cover these syllabus requirements across the eight KLAs in less than five hours a day, and between many of the extra-curricula activities occurring throughout a school year (e.g., Easter activities, Education Week, concerts, excursions, performances). In Australia, education systems have developed standards for all KLAs (e.g., Education Queensland, NSW Department of Education and Training, Victorian Education) usually designated by a code. In the late 1990’s (in Queensland), “core learning outcomes” for strands across all KLA’s. For example, LL2.1 for the Queensland Education science syllabus means Life and Living at Level 2 standard number 1. Thus, a teacher’s planning requires the inclusion of standards as indicated by the presiding syllabus. More recently, the core learning outcomes were replaced by “essential learnings”. They specify “what students should be taught and what is important for students to have opportunities to know, understand and be able to do” (Queensland Studies Authority, 2009, para. 1). Fusing science education with other KLAs may facilitate more efficient use of time and resources; however this type of planning needs to combine standards from two syllabuses. To further assist in facilitating sound pedagogical practices, there are models proposed for learning science, technology and other KLAs such as Bloom’s Taxonomy (Bloom, 1956), Productive Pedagogies (Education Queensland, 2004), de Bono’s Six Hats (de Bono, 1985), and Gardner’s Multiple Intelligences (Gardner, 1999) that imply, warrant, or necessitate fused curricula. Bybee’s 5 Es, for example, has five levels of learning (engage, explore, explain, elaborate, and evaluate; Bybee, 1997) can have the potential for fusing science and ICT standards.
Resumo:
In early childhood settings prior to school and in the early years of primary school, debate continues over the meaning of inclusion and its scope in terms of the groups under consideration. The genealogies of early childhood education and care, early primary school, special education and cultural education were examined to identify recurring and emerging approaches to inclusion within Australian programs for children aged birth to eight years. Approaches to inclusion encompassing multiple forms of diversity co-exist in the Australian educational literature with targeted approaches focused on disabilities or risk. These differing approaches reflect underlying ideological divisions and varying assumptions about diversity. Multiple approaches, including the expansion of early childhood services, reflect tensions over children’s rights, conceptualisations of inclusion, expectations of teachers, system coordination, economic constraints and political pressure to cater for a complex range of young children in varied settings. The paper incorporates discussion on underlying philosophical tensions within the early childhood field.