37 resultados para Kipke, Harry G.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10−8). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10−8), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ~2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is evidence across several species for genetic control of phenotypic variation of complex traits1, 2, 3, 4, such that the variance among phenotypes is genotype dependent. Understanding genetic control of variability is important in evolutionary biology, agricultural selection programmes and human medicine, yet for complex traits, no individual genetic variants associated with variance, as opposed to the mean, have been identified. Here we perform a meta-analysis of genome-wide association studies of phenotypic variation using ~170,000 samples on height and body mass index (BMI) in human populations. We report evidence that the single nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus, which is known to be associated with obesity (as measured by mean BMI for each rs7202116 genotype)5, 6, 7, is also associated with phenotypic variability. We show that the results are not due to scale effects or other artefacts, and find no other experiment-wise significant evidence for effects on variability, either at loci other than FTO for BMI or at any locus for height. The difference in variance for BMI among individuals with opposite homozygous genotypes at the FTO locus is approximately 7%, corresponding to a difference of ~0.5 kilograms in the standard deviation of weight. Our results indicate that genetic variants can be discovered that are associated with variability, and that between-person variability in obesity can partly be explained by the genotype at the FTO locus. The results are consistent with reported FTO by environment interactions for BMI8, possibly mediated by DNA methylation9, 10. Our BMI results for other SNPs and our height results for all SNPs suggest that most genetic variants, including those that influence mean height or mean BMI, are not associated with phenotypic variance, or that their effects on variability are too small to detect even with samples sizes greater than 100,000.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To further investigate a common variant (rs9939609) in the fat mass- and obesity-associated gene (FTO), which recent genome-wide association studies have shown to be associated with body mass index (BMI) and obesity. DESIGN: We examined the effect of this FTO variant on BMI in 3353 Australian adult male and female twins. RESULTS: The minor A allele of rs9939609 was associated with an increased BMI (P=0.0007). Each additional copy of the A allele was associated with a mean BMI increase of approximately 1.04 kg/m(2) (approximately 3.71 kg). Using variance components decomposition, we estimate that this single-nucleotide polymorphism accounts for approximately 3% of the genetic variance in BMI in our sample (approximately 2% of the total variance). By comparing intrapair variances of monozygotic twins of different genotypes we were able to perform a direct test of gene by environment (G x E) interaction in both sexes and gene by parity (G x P) interaction in women, but no evidence was found for either. CONCLUSIONS: In addition to supporting earlier findings that the rs9939609 variant in the FTO gene is associated with an increased BMI, our results indicate that the associated genetic effect does not interact with environment or parity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10−9 to P = 1.8 × 10−40) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10−3 to P = 1.2 × 10−13). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

-Essential hypertensives display enhanced signal transduction through pertussis toxin-sensitive G proteins. The T allele of a C825T variant in exon 10 of the G protein beta3 subunit gene (GNB3) induces formation of a splice variant (Gbeta3-s) with enhanced activity. The T allele of GNB3 was shown recently to be associated with hypertension in unselected German patients (frequency=0.31 versus 0.25 in control). To confirm and extend this finding in a different setting, we performed an association study in Australian white hypertensives. This involved an extensively examined cohort of 110 hypertensives, each of whom were the offspring of 2 hypertensive parents, and 189 normotensives whose parents were both normotensive beyond age 50 years. Genotyping was performed by polymerase chain reaction and digestion with BseDI, which either cut (C allele) or did not cut (T allele) the 268-bp polymerase chain reaction product. T allele frequency in the hypertensive group was 0.43 compared with 0.25 in the normotensive group (chi2=22; P=0.00002; odds ratio=2.3; 95% CI=1.7 to 3.3). The T allele tracked with higher pretreatment blood pressure: diastolic=105+/-7, 109+/-16, and 128+/-28 mm Hg (mean+/-SD) for CC, CT, and TT, respectively (P=0.001 by 1-way ANOVA). Blood pressures were higher in female hypertensives with a T allele (P=0.006 for systolic and 0.0003 for diastolic by ANOVA) than they were in male hypertensives. In conclusion, the present study of a group with strong family history supports a role for a genetically determined, physiologically active splice variant of the G protein beta3 subunit gene in the causation of essential hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homozygosity has long been associated with rare, often devastating, Mendelian disorders1, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3, 4. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10−300, 2.1 × 10−6, 2.5 × 10−10 and 1.8 × 10−10, respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months’ less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5, 6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.