32 resultados para Kernel Linux TED Wi-Fi VoIP
Resumo:
In this paper, we aim at predicting protein structural classes for low-homology data sets based on predicted secondary structures. We propose a new and simple kernel method, named as SSEAKSVM, to predict protein structural classes. The secondary structures of all protein sequences are obtained by using the tool PSIPRED and then a linear kernel on the basis of secondary structure element alignment scores is constructed for training a support vector machine classifier without parameter adjusting. Our method SSEAKSVM was evaluated on two low-homology datasets 25PDB and 1189 with sequence homology being 25% and 40%, respectively. The jackknife test is used to test and compare our method with other existing methods. The overall accuracies on these two data sets are 86.3% and 84.5%, respectively, which are higher than those obtained by other existing methods. Especially, our method achieves higher accuracies (88.1% and 88.5%) for differentiating the α + β class and the α/β class compared to other methods. This suggests that our method is valuable to predict protein structural classes particularly for low-homology protein sequences. The source code of the method in this paper can be downloaded at http://math.xtu.edu.cn/myphp/math/research/source/SSEAK_source_code.rar.
Resumo:
Identifying unusual or anomalous patterns in an underlying dataset is an important but challenging task in many applications. The focus of the unsupervised anomaly detection literature has mostly been on vectorised data. However, many applications are more naturally described using higher-order tensor representations. Approaches that vectorise tensorial data can destroy the structural information encoded in the high-dimensional space, and lead to the problem of the curse of dimensionality. In this paper we present the first unsupervised tensorial anomaly detection method, along with a randomised version of our method. Our anomaly detection method, the One-class Support Tensor Machine (1STM), is a generalisation of conventional one-class Support Vector Machines to higher-order spaces. 1STM preserves the multiway structure of tensor data, while achieving significant improvement in accuracy and efficiency over conventional vectorised methods. We then leverage the theory of nonlinear random projections to propose the Randomised 1STM (R1STM). Our empirical analysis on several real and synthetic datasets shows that our R1STM algorithm delivers comparable or better accuracy to a state-of-the-art deep learning method and traditional kernelised approaches for anomaly detection, while being approximately 100 times faster in training and testing.