45 resultados para K ras protein
Resumo:
Breast cancer metastasis to the bone occurs frequently, causing numerous complications including severe pain, fracture, hypercalcemia, and paralysis. Despite its prevalence and severity, few effective therapies exist. To address this, we examined whether the heat shock protein 90 (Hsp90) inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), would be efficacious in inhibiting breast cancer metastasis to bone. Utilizing the human breast cancer subline, MDA-MB-231SA, previously in vivo selected for its enhanced ability to generate osteolytic bone lesions, we determined that 17-AAG potently inhibited its in vitro proliferation and migration. Moreover, 17-AAG significantly reduced MDA-MB-231SA tumor growth in the mammary-fat pad of nude mice. Despite these findings, 17-AAG enhanced the incidence of bone metastasis and osteolytic lesions following intracardiac inoculation in the nude mouse. Consistent with these findings, 17-AAG enhanced osteoclast formation 2- to 4-fold in mouse bone marrow/osteoblast cocultures, receptor activator of nuclear factor κB ligand (BANKL)-stimulated bone marrow, and RAW264.7 cell models of in vitro osteoclastogenesis. Moreover, the drug enhanced osteoclastogenesis in human cord blood progenitor cells, demonstrating that its effects were not limited to mouse models. In addition to 17-AAG, other Hsp90 inhibitors, such as radicicol and herbimycin A, also enhanced osteoclastogenesis. A pro-osteolytic action of 17-AAG independent of tumor presence was also determined in vivo, in which 17-AAG-treated tumor-naive mice had reduced trabecular bone volume with an associated increase in osteoclast number. Thus, HSP90 inhibitors can stimulate osteoclast formation, which may underlie the increased incidence of osteolysis and skeletal tumor incidence causedby 17-AAG in vivo. These data suggest an important contraindication to the Hsp90 targeted cancer therapy currently undergoing clinical trial.
Resumo:
Aberrant DNA replication is a primary cause of mutations that are associated with pathological disorders including cancer. During DNA metabolism, the primary causes of replication fork stalling include secondary DNA structures, highly transcribed regions and damaged DNA. The restart of stalled replication forks is critical for the timely progression of the cell cycle and ultimately for the maintenance of genomic stability. Our previous work has implicated the single-stranded DNA binding protein, hSSB1/NABP2, in the repair of DNA double-strand breaks via homologous recombination. Here, we demonstrate that hSSB1 relocates to hydroxyurea (HU)-damaged replication forks where it is required for ATR and Chk1 activation and recruitment of Mre11 and Rad51. Consequently, hSSB1-depleted cells fail to repair and restart stalled replication forks. hSSB1 deficiency causes accumulation of DNA strand breaks and results in chromosome aberrations observed in mitosis, ultimately resulting in hSSB1 being required for survival to HU and camptothecin. Overall, our findings demonstrate the importance of hSSB1 in maintaining and repairing DNA replication forks and for overall genomic stability.
Resumo:
Researchers worldwide with information about the Kirsten ras (Ki-ras) tumour genotype and outcome of patients with colorectal cancer were invited to provide that data in a schematized format for inclusion in a collaborative database called RASCAL (The Kirsten ras in-colorectal-cancer collaborative group). Our results from 2721 such patients have been presented previously and for the first time in any common cancer, showed conclusively that different gene mutations have different impacts on outcome, even when the mutations occur at the same site on the genome. To explore the effect of Ki-ras mutations at different stages of colorectal cancer, more patients were recruited to the database, which was reanalysed when information on 4268 patients from 42 centres in 21 countries had been entered. After predetermined exclusion criteria were applied, data on 3439 patients were entered into a multivariate analysis. This found that of the 12 possible mutations on codons 12 and 13 of Kirsten ras, only one mutation on codon 12, glycine to valine, found in 8.6% of all patients, had a statistically significant impact on failure-free survival (P = 0.004, HR 1.3) and overall survival (P = 0.008, HR 1.29). This mutation appeared to have a greater impact on outcome in Dukes’ C cancers (failure-free survival, P = 0.008, HR 1.5; overall survival P = 0.02, HR 1.45) than in Dukes’ B tumours (failure-free survival, P = 0.46, HR 1.12; overall survival P = 0.36, HR 1.15). Ki-ras mutations may occur early in the development of pre-cancerous adenomas in the colon and rectum. However, this collaborative study suggests that not only is the presence of a codon 12 glycine to valine mutation important for cancer progression but also that it may predispose to more aggressive biological behaviour in patients with advanced colorectal cancer.
Resumo:
Selumetinib (AZD6244, ARRY-142886) is a selective, non-ATP-competitive inhibitor of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)-1/2. The range of antitumor activity seen preclinically and in patients highlights the importance of identifying determinants of response to this drug. In large tumor cell panels of diverse lineage, we show that MEK inhibitor response does not have an absolute correlation with mutational or phospho-protein markers of BRAF/MEK, RAS, or phosphoinositide 3-kinase (PI3K) activity. We aimed to enhance predictivity by measuring pathway output through coregulated gene networks displaying differential mRNA expression exclusive to resistant cell subsets and correlated to mutational or dynamic pathway activity. We discovered an 18-gene signature enabling measurement of MEK functional output independent of tumor genotype. Where the MEK pathway is activated but the cells remain resistant to selumetinib, we identified a 13-gene signature that implicates the existence of compensatory signaling from RAS effectors other than PI3K. The ability of these signatures to stratify samples according to functional activation of MEK and/or selumetinib sensitivity was shown in multiple independent melanoma, colon, breast, and lung tumor cell lines and in xenograft models. Furthermore, we were able to measure these signatures in fixed archival melanoma tumor samples using a single RT-qPCR-based test and found intergene correlations and associations with genetic markers of pathway activity to be preserved. These signatures offer useful tools for the study of MEK biology and clinical application of MEK inhibitors, and the novel approaches taken may benefit other targeted therapies.
Resumo:
Enterohaemorrhagic Escherichia coli (EHEC) are a subgroup of Shiga toxin-producing E. coli that cause gastrointestinal disease with the potential for life-threatening sequelae. Cattle serve as the natural reservoir for EHEC and outbreaks occur sporadically as a result of contaminated beef and other farming products. While certain EHEC virulence mechanisms have been extensively studied, the factors that mediate host colonization are poorly defined. Previously, we identified four proteins (EhaA,B,C,D) from the prototypic EHEC strain EDL933 that belong to the autotransporter (AT) family. Here we characterize the EhaB AT protein. EhaB was shown to be located at the cell surface and overexpression in E. coli K-12 resulted in significant biofilm formation under continuous flow conditions. Overexpression of EhaB in E. coli K12 and EDL933 backgrounds also promoted adhesion to the extracellular matrix proteins collagen I and laminin. An EhaB-specific antibody revealed that EhaB is expressed in E. coli EDL933 following in vitro growth. EhaB also cross-reacted with serum IgA from cattle challenged with E. coli O157:H7, indicating that EhaB is expressed in vivo and elicits a host IgA immune response.
Resumo:
Interactions of chemicals with the microtubular network of cells may lead to genotoxicity. Micronuclei (MN) might be caused by interaction of metals with tubulin and/or kinesin. The genotoxic effects of inorganic lead and mercury salts were studied using the MN assay and the CREST analysis in V79 Chinese hamster fibroblasts. Effects on the functional activity of motor protein systems were examined by measurement of tubulin assembly and kinesin-driven motility. Lead and mercury salts induced MN dose-dependently. The no-effect-concentration for MN induction was 1.1 μM PbCl2, 0.05 μM Pb(OAc)2 and 0.01 μM HgCl2. The in vitro results obtained for PbCl2 correspond to reported MN induction in workers occupationally exposed to lead, starting at 1.2 μM Hg(II) (Vaglenov et al., 2001, Environ. Health Perspect. 109, 295-298). The CREST Analysis indicate aneugenic effects of Pb(II) and aneugenic and additionally clastogenic effects of Hg(II). Lead (chloride, acetate, and nitrate) and mercury (chloride and nitrate) interfered dose-dependently with tubulin assembly in vitro. The no-effect-concentration for lead salts in this assay was 10 μM. Inhibition of tubulin assembly by mercury started at 2 μM. The gliding velocity of microtubules along immobilised kinesin molecules was affected by 25 μM Pb(NO3)2 and 0.1 μM HgCl2 in a dose-dependent manner. Our data support the hypothesis that lead and mercury genotoxicity may result, at least in part, via disturbance of chromosome segregation via interaction with cytoskeletal proteins.
Resumo:
Silver nanoparticles with identical plasmonic properties but different surface functionalities are synthesized and tested as chemically selective surface-enhanced resonance Raman (SERR) amplifiers in a two-component protein solution. The surface plasmon resonances of the particles are tuned to 413 nm to match the molecular resonance of protein heme cofactors. Biocompatible functionalization of the nanoparticles with a thin film of chitosan yields selective SERR enhancement of the anionic protein cytochrome b5, whereas functionalization with SiO2 amplifies only the spectra of the cationic protein cytochrome c. As a result, subsequent addition of the two differently functionalized particles yields complementary information on the same mixed protein sample solution. Finally, the applicability of chitosan-coated Ag nanoparticles for protein separation was tested by in situ resonance Raman spectroscopy.
Resumo:
GABAB receptors associate with Gi/o-proteins that regulate voltage-gated Ca(2+) channels and thus the intracellular Ca(2+) concentration ([Ca(2+)]i), there is also reported cross-regulation of phospholipase C. These associations have been studied extensively in the brain and also shown to occur in non-neural cells (e.g. human airway smooth muscle). More recently GABAB receptors have been observed in chick retinal pigment epithelium (RPE). The aims were to investigate whether the GABAB receptor subunits, GABAB1 and GABAB2, are co-expressed in cultured human RPE cells, and then determine if the GABAB receptor similarly regulates the [Ca(2+)]i of RPE cells and if phospholipase C is involved. Human RPE cells were cultured from 5 donor eye cups. Evidence for GABAB1 and GABAB2 mRNAs and proteins in the RPE cell cultures were investigated using real time PCR, western blots and immunofluorescence. The effects of the GABAB receptor agonist baclofen, antagonist CGP46381, a Gi/o-protein inhibitor pertussis toxin, and the phospholipase C inhibitor U73122 on [Ca(2+)]i in cultured human RPE were demonstrated using Fluo-3. Both GABAB1 and GABAB2 mRNA and protein were identified in cell cultures of human RPE; antibody staining was co-localized to the cell membrane and cytoplasm. One-hundred μM baclofen caused a transient increase in the [Ca(2+)]i of RPE cells regardless of whether Ca(2+) was added to the buffer. Baclofen induced increases in the [Ca(2+)]i were attenuated by pre-treatment with CGP46381, pertussis toxin, and U73122. GABAB1 and GABAB2 are co-expressed in cell cultures of human RPE. GABAB receptors in RPE regulate the [Ca(2+)]i via a Gi/o-protein and phospholipase C pathway.
Resumo:
The 19 kDa carboxyl-terminal fragment of merozoite surface protein 1 (MSP119) is a major component of the invasion-inhibitory response in individual immunity to malaria. A novel ultrasonic atomization approach for the formulation of biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles of malaria DNA vaccines encoding MSP119 is presented here. After condensing the plasmid DNA (pDNA) molecules with a cationic polymer polyethylenimine (PEI), a 40 kHz ultrasonic atomization frequency was used to formulate PLGA microparticles at a flow rate of 18 mL h1. High levels of gene expression and moderate cytotoxicity in COS-7 cells were achieved with the condensed pDNA at a nitrogen to phosphate (N/P) ratio of 20, thus demonstrating enhanced cellular uptake and expression of the transgene. The ability of the microparticles to convey pDNA was examined by characterizing the formulated microparticles. The microparticles displayed Z-average hydrodynamic diameters of 1.50-2.10 lm and zeta potentials of 17.8-23.2 mV. The encapsulation efficiencies were between 78 and 83%, and 76 and 85% of the embedded malaria pDNA molecules were released under physiological conditions in vitro. These results indicate that PLGA-mediated microparticles can be employed as potential gene delivery systems to antigen-presenting cells in the prevention of malaria.
Resumo:
DNA vaccines or proteins are capable of inducing specific immunity; however, the translation to the clinic has generally been problematic, primarily due to the reduced magnitude of immune response and poor pharmacokinetics. Herein we demonstrate a composite microsphere formulation, composed of mesoporous silica spheres (MPS) and poly(d,l-lactide-co-glycolide) (PLGA), enables the controlled delivery of a prime-boost vaccine via the encapsulation of plasmid DNA (pDNA) and protein in different compartments. Method with modified dual-concentric-feeding needles attached to a 40 kHz ultrasonic atomizer was studied. These needles focus the flow of two different solutions, which passed through the ultrasonic atomizer. The process synthesis parameters, which are important to the scale-up of composite microspheres, were also studied. These parameters include polymer concentration, feed flowrate, and volumetric ratio of polymer and pDNA-PEI/MPS-BSA. This fabrication technique produced composite microspheres with mean D[4,3] ranging from 6 to 34 μm, depending upon the microsphere preparation. The resultant physical morphology of composite microspheres was largely influenced by the volumetric ratio of pDNA-PEI/MPS-BSA to polymer, and this was due to the precipitation of MPS at the surface of the microspheres. The encapsulation efficiencies were predominantly in the range of 93-98% for pDNA and 46-68% for MPS. In the in vitro studies, the pDNA and protein showed different release kinetics in a 40 day time frame. The dual-concentric-feeding in ultrasonic atomization was shown to have excellent reproducibility. It was concluded that this fabrication technique is an effective method to prepare formulations containing a heterologous prime-boost vaccine in a single delivery system.
Resumo:
Background The adsorption of bovine serum albumin (BSA) onto mesoporous silica spheres (MPS) synthesized from silica colloids was studied employing real time in situ measurements. The stabilities of the BSA at different pH values, their isoelectric points and zeta potentials were determined in order to probe the interactions between the protein and the mesoporous silica. Results The pore size of MPS was designed for protein, and this, coupled with an in depth understanding of the physico-chemical characteristics of the protein and MPS has yielded a better binding capacity and delivery profile. The adsorption isotherm at pH 4.2 fitted the Langmuir model and displayed the highest adsorption capacity (71.43 mg mL-1 MPS). Furthermore, the delivery rates of BSA from the MPS under physiological conditions were shown to be dependent on the ionic strength of the buffer and protein loading concentration. Conclusion Economics and scale-up considerations of mesoporous material synthesized via destabilization of colloids by electrolyte indicate the scaleability and commercial viability of this technology as a delivery platform for biopharmaceutical applications.
Resumo:
Improved biopharmaceutical delivery may be achieved via the use of biodegradable microspheres as delivery vehicles. Biodegradable microspheres offer the advantages of maintaining sustained protein release over time whilst simultaneously protecting the biopharmaceutical from degradation. Particle samples produced by ultrasonic atomization were studied in order to determine a feed stock capable of producing protein loaded poly-ε-caprolactone (PCL) particles suitable for nasal delivery (i.e., less than 20 μm). A 40 kHz atomization system was used with a 6 mm full wave atomization probe. The effect of solids percent, feed flow rate, volumetric ratio of the polymer stock to the protein stock, and protein concentration in the protein stock on particle size characteristics were determined. It was shown that feed stocks containing 100 parts of 0.5 or 1.0% w/v PCL in acetone with one part 100 mg ml -1 BSA and 15 mg ml -1 PVA produced particles with a mass moment diameter (D[4,3]) of 13.17 μm and 9.10 μm, respectively in addition to displaying high protein encapsulation efficiencies of 93 and 95%, respectively. The biodegradable PCL particles were shown to be able to deliver encapsulated protein in vitro under physiological conditions.
Resumo:
Objective Certain mutations in ANKH, which encodes a multiple-pass transmembrane protein that regulates inorganic pyrophosphate (PPi) transport, are linked to autosomal-dominant familial chondrocalcinosis. This study investigated the potential for ANKH sequence variants to promote sporadic chondrocalcinosis. Methods ANKH variants identified by genomic sequencing were screened for association with chondrocalcinosis in 128 patients with severe sporadic chondrocalcinosis or pseudogout and in ethnically matched healthy controls. The effects of specific variants on expression of common markers were evaluated by in vitro transcription/translation. The function of these variants was studied in transfected human immortalized CH-8 articular chondrocytes. Results Sporadic chondrocalcinosis was associated with a G-to-A transition in the ANKH 5′-untranslated region (5′-UTR) at 4 bp upstream of the start codon (in homozygotes of the minor allele, genotype relative risk 6.0, P = 0.0006; overall genotype association P = 0.02). This -4-bp transition, as well as 2 mutations previously linked with familial and sporadic chondrocalcinosis (+14 bp C-to-T and C-terminal GAG deletion, respectively), but not the French familial chondrocalcinosis kindred 143-bp T-to-C mutation, increased reticulocyte ANKH transcription/ANKH translation in vitro. Transfection of complementary DNA for both the wild-type ANKH and the -4-bp ANKH protein variant promoted increased extracellular PPi in CH-8 cells, but unexpectedly, these ANKH mutants had divergent effects on the expression of extracellular PPi and the chondrocyte hypertrophy marker, type X collagen. Conclusion A subset of sporadic chondrocalcinosis appears to be heritable via a -4-bp G-to-A ANKH 5′-UTR transition that up-regulates expression of ANKH and extracellular PPi in chondrocyte cells. Distinct ANKH mutations associated with heritable chondrocalcinosis may promote disease by divergent effects on extracellular PPi and chondrocyte hypertrophy, which is likely to mediate differences in the clinical phenotypes and severity of the disease.
Resumo:
Kafirin microparticles have been proposed as an oral nutraceutical and drug delivery system. This study investigates microparticles formed with kafirin extracted from white and raw versus cooked red sorghum grains as an oral delivery system. Targeted delivery to the colon would be beneficial for medication such as prednisolone, which is used in the management of inflammatory bowel disease. Therefore, prednisolone was loaded into microparticles of kafirin from the different sources using phase separation. Differences were observed in the protein content, in vitro protein digestibility, and protein electrophoretic profile of the various sources of sorghum grains, kafirin extracts, and kafirin microparticles. For all of the formulations, the majority of the loaded prednisolone was not released in in vitro conditions simulating the upper gastrointestinal tract, indicating that most of the encapsulated drug could reach the target area of the lower gastrointestinal tract. This suggests that these kafirin microparticles may have potential as a colon-targeted nutraceutical and drug delivery system.
Resumo:
While many measures of viewpoint goodness have been proposed in computer graphics, none have been evaluated for ribbon representations of protein secondary structure. To fill this gap, we conducted a user study on Amazon’s Mechanical Turk platform, collecting human viewpoint preferences from 65 participants for 4 representative su- perfamilies of protein domains. In particular, we evaluated viewpoint entropy, which was previously shown to be a good predictor for human viewpoint preference of other, mostly non-abstract objects. In a second study, we asked 7 molecular biology experts to find the best viewpoint of the same protein domains and compared their choices with viewpoint entropy. Our results show that viewpoint entropy overall is a significant predictor of human viewpoint preference for ribbon representations of protein secondary structure. However, the accuracy is highly dependent on the complexity of the structure: while most participants agree on good viewpoints for small, non-globular structures with few secondary structure elements, viewpoint preference varies considerably for complex structures. Finally, experts tend to choose viewpoints of both low and high viewpoint entropy to emphasize different aspects of the respective structure.