563 resultados para Iterative methods (Mathematics)
Resumo:
Problems involving the solution of advection-diffusion-reaction equations on domains and subdomains whose growth affects and is affected by these equations, commonly arise in developmental biology. Here, a mathematical framework for these situations, together with methods for obtaining spatio-temporal solutions and steady states of models built from this framework, is presented. The framework and methods are applied to a recently published model of epidermal skin substitutes. Despite the use of Eulerian schemes, excellent agreement is obtained between the numerical spatio-temporal, numerical steady state, and analytical solutions of the model.
Resumo:
The use of symbols and abbreviations adds uniqueness and complexity to the mathematical language register. In this article, the reader’s attention is drawn to the multitude of symbols and abbreviations which are used in mathematics. The conventions which underpin the use of the symbols and abbreviations and the linguistic difficulties which learners of mathematics may encounter due to the inclusion of the symbolic language are discussed. 2010 NAPLAN numeracy tests are used to illustrate examples of the complexities of the symbolic language of mathematics.
Resumo:
Graphical tasks have become a prominent aspect of mathematics assessment. From a conceptual stance, the purpose of this study was to better understand the composition of graphical tasks commonly used to assess students’ mathematics understandings. Through an iterative design, the investigation described the sense making of 11–12-year-olds as they decoded mathematics tasks which contained a graphic. An ongoing analysis of two phases of data collection was undertaken as we analysed the extent to which various elements of text, graphics, and symbols influenced student sense making. Specifically, the study outlined the changed behaviour (and performance) of the participants as they solved graphical tasks that had been modified with respect to these elements. We propose a theoretical framework for understanding the composition of a graphical task and identify three specific elements which are dependently and independently related to each other, namely: the graphic; the text; and the symbols. Results indicated that although changes to the graphical tasks were minimal, a change in student success and understanding was most evident when the graphic element was modified. Implications include the need for test designers to carefully consider the graphics embedded within mathematics tasks since the elements within graphical tasks greatly influence student understanding.
Resumo:
Background To describe the iterative development process and final version of ‘MobileMums’: a physical activity intervention for women with young children (<5 years) delivered primarily via mobile telephone (mHealth) short messaging service (SMS). Methods MobileMums development followed the five steps outlined in the mHealth development and evaluation framework: 1) conceptualization (critique of literature and theory); 2) formative research (focus groups, n= 48); 3) pre-testing (qualitative pilot of intervention components, n= 12); 4) pilot testing (pilot RCT, n= 88); and, 5) qualitative evaluation of the refined intervention (n= 6). Results Key findings identified throughout the development process that shaped the MobileMums program were the need for: behaviour change techniques to be grounded in Social Cognitive Theory; tailored SMS content; two-way SMS interaction; rapport between SMS sender and recipient; an automated software platform to generate and send SMS; and, flexibility in location of a face-to-face delivered component. Conclusions The final version of MobileMums is flexible and adaptive to individual participant’s physical activity goals, expectations and environment. MobileMums is being evaluated in a community-based randomised controlled efficacy trial (ACTRN12611000481976).
Resumo:
The pioneering work of Runge and Kutta a hundred years ago has ultimately led to suites of sophisticated numerical methods suitable for solving complex systems of deterministic ordinary differential equations. However, in many modelling situations, the appropriate representation is a stochastic differential equation and here numerical methods are much less sophisticated. In this paper a very general class of stochastic Runge-Kutta methods is presented and much more efficient classes of explicit methods than previous extant methods are constructed. In particular, a method of strong order 2 with a deterministic component based on the classical Runge-Kutta method is constructed and some numerical results are presented to demonstrate the efficacy of this approach.
Resumo:
In this paper, general order conditions and a global convergence proof are given for stochastic Runge Kutta methods applied to stochastic ordinary differential equations ( SODEs) of Stratonovich type. This work generalizes the ideas of B-series as applied to deterministic ordinary differential equations (ODEs) to the stochastic case and allows a completely general formalism for constructing high order stochastic methods, either explicit or implicit. Some numerical results will be given to illustrate this theory.
Resumo:
In recent years considerable attention has been paid to the numerical solution of stochastic ordinary differential equations (SODEs), as SODEs are often more appropriate than their deterministic counterparts in many modelling situations. However, unlike the deterministic case numerical methods for SODEs are considerably less sophisticated due to the difficulty in representing the (possibly large number of) random variable approximations to the stochastic integrals. Although Burrage and Burrage [High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations, Applied Numerical Mathematics 22 (1996) 81-101] were able to construct strong local order 1.5 stochastic Runge-Kutta methods for certain cases, it is known that all extant stochastic Runge-Kutta methods suffer an order reduction down to strong order 0.5 if there is non-commutativity between the functions associated with the multiple Wiener processes. This order reduction down to that of the Euler-Maruyama method imposes severe difficulties in obtaining meaningful solutions in a reasonable time frame and this paper attempts to circumvent these difficulties by some new techniques. An additional difficulty in solving SODEs arises even in the Linear case since it is not possible to write the solution analytically in terms of matrix exponentials unless there is a commutativity property between the functions associated with the multiple Wiener processes. Thus in this present paper first the work of Magnus [On the exponential solution of differential equations for a linear operator, Communications on Pure and Applied Mathematics 7 (1954) 649-673] (applied to deterministic non-commutative Linear problems) will be applied to non-commutative linear SODEs and methods of strong order 1.5 for arbitrary, linear, non-commutative SODE systems will be constructed - hence giving an accurate approximation to the general linear problem. Secondly, for general nonlinear non-commutative systems with an arbitrary number (d) of Wiener processes it is shown that strong local order I Runge-Kutta methods with d + 1 stages can be constructed by evaluated a set of Lie brackets as well as the standard function evaluations. A method is then constructed which can be efficiently implemented in a parallel environment for this arbitrary number of Wiener processes. Finally some numerical results are presented which illustrate the efficacy of these approaches. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In many modeling situations in which parameter values can only be estimated or are subject to noise, the appropriate mathematical representation is a stochastic ordinary differential equation (SODE). However, unlike the deterministic case in which there are suites of sophisticated numerical methods, numerical methods for SODEs are much less sophisticated. Until a recent paper by K. Burrage and P.M. Burrage (1996), the highest strong order of a stochastic Runge-Kutta method was one. But K. Burrage and P.M. Burrage (1996) showed that by including additional random variable terms representing approximations to the higher order Stratonovich (or Ito) integrals, higher order methods could be constructed. However, this analysis applied only to the one Wiener process case. In this paper, it will be shown that in the multiple Wiener process case all known stochastic Runge-Kutta methods can suffer a severe order reduction if there is non-commutativity between the functions associated with the Wiener processes. Importantly, however, it is also suggested how this order can be repaired if certain commutator operators are included in the Runge-Kutta formulation. (C) 1998 Elsevier Science B.V. and IMACS. All rights reserved.
Resumo:
In Burrage and Burrage [1] it was shown that by introducing a very general formulation for stochastic Runge-Kutta methods, the previous strong order barrier of order one could be broken without having to use higher derivative terms. In particular, methods of strong order 1.5 were developed in which a Stratonovich integral of order one and one of order two were present in the formulation. In this present paper, general order results are proven about the maximum attainable strong order of these stochastic Runge-Kutta methods (SRKs) in terms of the order of the Stratonovich integrals appearing in the Runge-Kutta formulation. In particular, it will be shown that if an s-stage SRK contains Stratonovich integrals up to order p then the strong order of the SRK cannot exceed min{(p + 1)/2, (s - 1)/2), p greater than or equal to 2, s greater than or equal to 3 or 1 if p = 1.
Resumo:
Rayleigh–Stokes problems have in recent years received much attention due to their importance in physics. In this article, we focus on the variable-order Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative. Implicit and explicit numerical methods are developed to solve the problem. The convergence, stability of the numerical methods and solvability of the implicit numerical method are discussed via Fourier analysis. Moreover, a numerical example is given and the results support the effectiveness of the theoretical analysis.
Resumo:
Quantitative imaging methods to analyze cell migration assays are not standardized. Here we present a suite of two–dimensional barrier assays describing the collective spreading of an initially–confined population of 3T3 fibroblast cells. To quantify the motility rate we apply two different automatic image detection methods to locate the position of the leading edge of the spreading population after 24, 48 and 72 hours. These results are compared with a manual edge detection method where we systematically vary the detection threshold. Our results indicate that the observed spreading rates are very sensitive to the choice of image analysis tools and we show that a standard measure of cell migration can vary by as much as 25% for the same experimental images depending on the details of the image analysis tools. Our results imply that it is very difficult, if not impossible, to meaningfully compare previously published measures of cell migration since previous results have been obtained using different image analysis techniques and the details of these techniques are not always reported. Using a mathematical model, we provide a physical interpretation of our edge detection results. The physical interpretation is important since edge detection algorithms alone do not specify any physical measure, or physical definition, of the leading edge of the spreading population. Our modeling indicates that variations in the image threshold parameter correspond to a consistent variation in the local cell density. This means that varying the threshold parameter is equivalent to varying the location of the leading edge in the range of approximately 1–5% of the maximum cell density.
Resumo:
There has been considerable recent work on the development of energy conserving one-step methods that are not symplectic. Here we extend these ideas to stochastic Hamiltonian problems with additive noise and show that there are classes of Runge-Kutta methods that are very effective in preserving the expectation of the Hamiltonian, but care has to be taken in how the Wiener increments are sampled at each timestep. Some numerical simulations illustrate the performance of these methods.
Resumo:
Spreading cell fronts play an essential role in many physiological processes. Classically, models of this process are based on the Fisher-Kolmogorov equation; however, such continuum representations are not always suitable as they do not explicitly represent behaviour at the level of individual cells. Additionally, many models examine only the large time asymptotic behaviour, where a travelling wave front with a constant speed has been established. Many experiments, such as a scratch assay, never display this asymptotic behaviour, and in these cases the transient behaviour must be taken into account. We examine the transient and asymptotic behaviour of moving cell fronts using techniques that go beyond the continuum approximation via a volume-excluding birth-migration process on a regular one-dimensional lattice. We approximate the averaged discrete results using three methods: (i) mean-field, (ii) pair-wise, and (iii) one-hole approximations. We discuss the performace of these methods, in comparison to the averaged discrete results, for a range of parameter space, examining both the transient and asymptotic behaviours. The one-hole approximation, based on techniques from statistical physics, is not capable of predicting transient behaviour but provides excellent agreement with the asymptotic behaviour of the averaged discrete results, provided that cells are proliferating fast enough relative to their rate of migration. The mean-field and pair-wise approximations give indistinguishable asymptotic results, which agree with the averaged discrete results when cells are migrating much more rapidly than they are proliferating. The pair-wise approximation performs better in the transient region than does the mean-field, despite having the same asymptotic behaviour. Our results show that each approximation only works in specific situations, thus we must be careful to use a suitable approximation for a given system, otherwise inaccurate predictions could be made.
Resumo:
Transport processes within heterogeneous media may exhibit non- classical diffusion or dispersion which is not adequately described by the classical theory of Brownian motion and Fick’s law. We consider a space-fractional advection-dispersion equation based on a fractional Fick’s law. Zhang et al. [Water Resources Research, 43(5)(2007)] considered such an equation with variable coefficients, which they dis- cretised using the finite difference method proposed by Meerschaert and Tadjeran [Journal of Computational and Applied Mathematics, 172(1):65-77 (2004)]. For this method the presence of variable coef- ficients necessitates applying the product rule before discretising the Riemann–Liouville fractional derivatives using standard and shifted Gru ̈nwald formulas, depending on the fractional order. As an alternative, we propose using a finite volume method that deals directly with the equation in conservative form. Fractionally-shifted Gru ̈nwald formulas are used to discretise the Riemann–Liouville fractional derivatives at control volume faces, eliminating the need for product rule expansions. We compare the two methods for several case studies, highlighting the convenience of the finite volume approach.