88 resultados para Incident waves


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assessing and prioritising cost-effective strategies to mitigate the impacts of traffic incidents and accidents on non-recurrent congestion on major roads represents a significant challenge for road network managers. This research examines the influence of numerous factors associated with incidents of various types on their duration. It presents a comprehensive traffic incident data mining and analysis by developing an incident duration model based on twelve months of incident data obtained from the Australian freeway network. Parametric accelerated failure time (AFT) survival models of incident duration were developed, including log-logistic, lognormal, and Weibul-considering both fixed and random parameters, as well as a Weibull model with gamma heterogeneity. The Weibull AFT models with random parameters were appropriate for modelling incident duration arising from crashes and hazards. A Weibull model with gamma heterogeneity was most suitable for modelling incident duration of stationary vehicles. Significant variables affecting incident duration include characteristics of the incidents (severity, type, towing requirements, etc.), and location, time of day, and traffic characteristics of the incident. Moreover, the findings reveal no significant effects of infrastructure and weather on incident duration. A significant and unique contribution of this paper is that the durations of each type of incident are uniquely different and respond to different factors. The results of this study are useful for traffic incident management agencies to implement strategies to reduce incident duration, leading to reduced congestion, secondary incidents, and the associated human and economic losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell invasion, characterised by moving fronts of cells, is an essential aspect of development, repair and disease. Typically, mathematical models of cell invasion are based on the Fisher–Kolmogorov equation. These traditional parabolic models can not be used to represent experimental measurements of individual cell velocities within the invading population since they imply that information propagates with infinite speed. To overcome this limitation we study combined cell motility and proliferation based on a velocity–jump process where information propagates with finite speed. The model treats the total population of cells as two interacting subpopulations: a subpopulation of left–moving cells, $L(x,t)$, and a subpopulation of right–moving cells, $R(x,t)$. This leads to a system of hyperbolic partial differential equations that includes a turning rate, $\Lambda \ge 0$, describing the rate at which individuals in the population change direction of movement. We present exact travelling wave solutions of the system of partial differential equations for the special case where $\Lambda = 0$ and in the limit that $\Lambda \to \infty$. For intermediate turning rates, $0 < \Lambda < \infty$, we analyse the travelling waves using the phase plane and we demonstrate a transition from smooth monotone travelling waves to smooth nonmonotone travelling waves as $\Lambda$ decreases through a critical value $\Lambda_{crit}$. We conclude by providing a qualitative comparison between the travelling wave solutions of our model and experimental observations of cell invasion. This comparison indicates that the small $\Lambda$ limit produces results that are consistent with experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invasion waves of cells play an important role in development, disease and repair. Standard discrete models of such processes typically involve simulating cell motility, cell proliferation and cell-to-cell crowding effects in a lattice-based framework. The continuum-limit description is often given by a reaction–diffusion equation that is related to the Fisher–Kolmogorov equation. One of the limitations of a standard lattice-based approach is that real cells move and proliferate in continuous space and are not restricted to a predefined lattice structure. We present a lattice-free model of cell motility and proliferation, with cell-to-cell crowding effects, and we use the model to replicate invasion wave-type behaviour. The continuum-limit description of the discrete model is a reaction–diffusion equation with a proliferation term that is different from lattice-based models. Comparing lattice based and lattice-free simulations indicates that both models lead to invasion fronts that are similar at the leading edge, where the cell density is low. Conversely, the two models make different predictions in the high density region of the domain, well behind the leading edge. We analyse the continuum-limit description of the lattice based and lattice-free models to show that both give rise to invasion wave type solutions that move with the same speed but have very different shapes. We explore the significance of these differences by calibrating the parameters in the standard Fisher–Kolmogorov equation using data from the lattice-free model. We conclude that estimating parameters using this kind of standard procedure can produce misleading results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change is leading to an increased frequency and severity of heat waves. Spells of several consecutive days of unusually high temperatures have led to increased mortality rates for the more vulnerable in the community. The problem is compounded by the escalating energy costs and increasing peak electrical demand as people become more reliant on air conditioning. Domestic air conditioning is the primary determinant of peak power demand which has been a major driver of higher electricity costs. This report presents the findings of multidisciplinary research which develops a national framework to evaluate the potential impacts of heat waves. It presents a technical, social and economic approach to adapt Australian residential buildings to ameliorate the impact of heat waves in the community and reduce the risk of its adverse outcomes. Through the development of a methodology for estimating the impact of global warming on key weather parameters in 2030 and 2050, it is possible to re-evaluate the size and anticipated energy consumption of air conditioners in future years for various climate zones in Australia. Over the coming decades it is likely that mainland Australia will require more cooling than heating. While in some parts the total electricity usage for heating and cooling may remain unchanged, there is an overall significant increase in peak electricity demand, likely to further drive electricity prices. Through monitoring groups of households in South Australia, New South Wales and Queensland, the impact of heat waves on both thermal comfort sensation and energy consumption for air conditioning has been evaluated. The results show that households are likely to be able to tolerate slightly increased temperature levels indoors during periods of high outside temperatures. The research identified that household electricity costs are likely to rise above what is currently projected due to the impact of climate change. Through a number of regulatory changes to both household design and air conditioners, this impact can be minimised. A number of proposed retrofit and design measures are provided, which can readily reduce electricity usage for cooling at minimal cost to the household. Using a number of social research instruments, it is evident that households are willing to change behaviour rather than to spend money. Those on lower income and elderly individuals are the least able to afford the use of air conditioning and should be a priority for interventions and assistance. Increasing community awareness of cost effective strategies to manage comfort and health during heat waves is a high priority recommended action. Overall, the research showed that a combined approach including behaviour change, dwelling modification and improved air conditioner selection can readily adapt Australian households to the impact of heat waves, reducing the risk of heat related deaths and household energy costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our results demonstrate that photorefractive residual amplitude modulation (RAM) noise in electro-optic modulators (EOMs) can be reduced by modifying the incident beam intensity distribution. Here we report an order of magnitude reduction in RAM when beams with uniform intensity (flat-top) profiles, generated with an LCOS-SLM, are used instead of the usual fundamental Gaussian mode (TEM00). RAM arises from the photorefractive amplified scatter noise off the defects and impurities within the crystal. A reduction in RAM is observed with increasing intensity uniformity (flatness), which is attributed to a reduction in space charge field on the beam axis. The level of RAM reduction that can be achieved is physically limited by clipping at EOM apertures, with the observed results agreeing well with a simple model. These results are particularly important in applications where the reduction of residual amplitude modulation to 10^-6 is essential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dementia is an irreversible and incurable syndrome that leads to progressive impairment of cognitive functions and behavioural and psychological symptoms such as agitation, depression and psychosis. Appropriate environmental conditions can help delay its onset and progression, and indoor environmental (IE) factors have a major impact. However, there is no firm understanding of the full range of relevant IE factors and their impact levels. This paper describes a preliminary study to investigate the effects of IE on Hong Kong residential care homes (RCH) dementia residents. This involved six purposively selected focus groups, each comprising the main stakeholders of the dementia residents’ caregivers, RCH staff and/or registered nurses, and architects. Using the Critical Incident Technique, the main context and experiences of behavioural problems of dementia residents caused by IE were explored and the key causal RCH IE quality factors identified, together with the associated responses and stress levels involved. The findings indicate that the acoustic environment, lighting and thermal environment are the most important influencing factors. Many of the remedies provided by the focus groups are quite simple to carry out and are summarised in the form of recommendations to current RCHs providers and users. The knowledge acquired in this initial study will help enrich the knowledge of IE design for dementiaspecific residential facilities. It also provides some preliminary insights for healthcare policymakers and practitioners in the building design/facilities management and dementia-care sectors into the IE factors contributing to a more comfortable, healthy and sustainable RCH living environment in Hong Kong.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Australasian rail industry lacks a consistently accepted standard of minimal training necessary to perform rail incident investigations. Current Australasian courses do not offer the breadth of development required for a comprehensive career pathway in incident investigation (Biggs, Banks & Dovan, 2012; Short, Kains & Harris, 2010).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow, and the existence with dynamic features was confirmed in congested urban network in downtown Yokohama with real data set. Since the MFD represents the area-wide network traffic performances, studies on perimeter control strategies and an area traffic state estimation utilizing the MFD concept has been reported. However, limited works have been reported on real world example from signalised arterial network. This paper fuses data from multiple sources (Bluetooth, Loops and Signals) and develops a framework for the development of the MFD for Brisbane, Australia. Existence of the MFD in Brisbane arterial network is confirmed. Different MFDs (from whole network and several sub regions) are evaluated to discover the spatial partitioning in network performance representation. The findings confirmed the usefulness of appropriate network partitioning for traffic monitoring and incident detections. The discussion addressed future research directions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis has created a space for women in the history of the decolonisation of the Gilbert Islands. It traces the historical development of the national women's interests program in the Republic of Kiribati (formerly of the Gilbert and Ellice Islands Colony (GEIC)) as it was implemented through a network of women's clubs during the 1960s and 1970s. This thesis has provided the first history and interpretation of the Indigenous women's interests movement as it impacted the Gilbert Islands. It offers a narrative of the movement in terms of three overlapping waves of women leaders, based on an analysis of fieldwork, archival research and interviews conducted on South Tarawa, Kiribati.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Young children are thought to be particularly sensitive to heatwaves, but relatively less research attention has been paid to this field to date. A systematic review was conducted to elucidate the relationship between heat waves and children’s health. Literature published up to August 2012 were identified using the following MeSH terms and keywords: “heatwave”, “heat wave”, “child health”, “morbidity”, “hospital admission”, “emergency department visit”, “family practice”, “primary health care”, “death” and “mortality”. Of the 628 publications identified, 12 met the selection criteria. The existing literature does not consistently suggest that mortality among children increases significantly during heat waves, even though infants were associated with more heat-related deaths. Exposure to heat waves in the perinatal period may pose a threat to children’s health. Pediatric diseases or conditions associated with heat waves include renal disease, respiratory disease, electrolyte imbalance and fever. Future research should focus on how to develop a consistent definition of a heat wave from a children’s health perspective, identifying the best measure of children’s exposure to heat waves, exploring sensitive outcome measures to quantify the impact of heat waves on children, evaluating the possible impacts of heat waves on children’s birth outcomes, and understanding the differences in vulnerability to heat waves among children of different ages and from different income countries. Projection of the children’s disease burden caused by heat waves under climate change scenarios, and development of effective heat wave mitigation and adaptation strategies that incorporate other child protective health measures, are also strongly recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since World War I, explosions have accounted for over 70% of all injuries in conflict. With the development of improved personnel protection of the torso, improved medical care and faster aeromedical evacuation, casualties are surviving with more severe injuries to the extremities. Understanding the processes involved in the transfer of blast-induced shock waves through biological tissues is essential for supporting efforts aimed at mitigating and treating blast injury. Given the inherent heterogeneities in the human body, we argue that studying these processes demands a highly integrated approach requiring expertise in shock physics, biomechanics and fundamental biological processes. This multidisciplinary systems approach enables one to develop the experimental framework for investigating the material properties of human tissues that are subjected to high compression waves in blast conditions and the fundamental cellular processes altered by this type of stimuli. Ultimately, we hope to use the information gained from these studies in translational research aimed at developing improved protection for those at risk and improved clinical outcomes for those who have been injured from a blast wave.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article deals with time-domain hydroelastic analysis of a marine structure. The convolution terms associated with fluid memory effects are replaced by an alternative state-space representation, the parameters of which are obtained by using realization theory. The mathematical model established is validated by comparison to experimental results of a very flexible barge. Two types of time-domain simulations are performed: dynamic response of the initially inert structure to incident regular waves and transient response of the structure after it is released from a displaced condition in still water. The accuracy and the efficiency of the simulations based on the state-space model representations are compared to those that integrate the convolutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow, and the existence with dynamic features was confirmed in congested urban network in downtown Yokohama with real data set. Since the MFD represents the area-wide network traffic performances, studies on perimeter control strategies and an area traffic state estimation utilizing the MFD concept has been reported. However, limited works have been reported on real world example from signalised arterial network. This paper fuses data from multiple sources (Bluetooth, Loops and Signals) and presents a framework for the development of the MFD for Brisbane, Australia. Existence of the MFD in Brisbane arterial network is confirmed. Different MFDs (from whole network and several sub regions) are evaluated to discover the spatial partitioning for network performance representation. The findings confirmed the usefulness of appropriate network partitioning for traffic monitoring and incident detections. The discussion addressed future research directions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate prediction of incident duration is not only important information of Traffic Incident Management System, but also an ffective input for travel time prediction. In this paper, the hazard based prediction odels are developed for both incident clearance time and arrival time. The data are obtained from the Queensland Department of Transport and Main Roads’ STREAMS Incident Management System (SIMS) for one year ending in November 2010. The best fitting distributions are drawn for both clearance and arrival time for 3 types of incident: crash, stationary vehicle, and hazard. The results show that Gamma, Log-logistic, and Weibull are the best fit for crash, stationary vehicle, and hazard incident, respectively. The obvious impact factors are given for crash clearance time and arrival time. The quantitative influences for crash and hazard incident are presented for both clearance and arrival. The model accuracy is analyzed at the end.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review focuses on one of the fundamental phenomena that occur upon application of sufficiently strong electric fields to gases, namely the formation and propagation of ionization waves-streamers. The dynamics of streamers is controlled by strongly nonlinear coupling, in localized streamer tip regions, between enhanced (due to charge separation) electric field and ionization and transport of charged species in the enhanced field. Streamers appear in nature (as initial stages of sparks and lightning, as huge structures-sprites above thunderclouds), and are also found in numerous technological applications of electrical discharges. Here we discuss the fundamental physics of the guided streamer-like structures-plasma bullets which are produced in cold atmospheric-pressure plasma jets. Plasma bullets are guided ionization waves moving in a thin column of a jet of plasma forming gases (e.g.,He or Ar) expanding into ambient air. In contrast to streamers in a free (unbounded) space that propagate in a stochastic manner and often branch, guided ionization waves are repetitive and highly-reproducible and propagate along the same path-the jet axis. This property of guided streamers, in comparison with streamers in a free space, enables many advanced time-resolved experimental studies of ionization waves with nanosecond precision. In particular, experimental studies on manipulation of streamers by external electric fields and streamer interactions are critically examined. This review also introduces the basic theories and recent advances on the experimental and computational studies of guided streamers, in particular related to the propagation dynamics of ionization waves and the various parameters of relevance to plasma streamers. This knowledge is very useful to optimize the efficacy of applications of plasma streamer discharges in various fields ranging from health care and medicine to materials science and nanotechnology.