52 resultados para Illinois Coal Development Board


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last decade, globalisation and liberalisation of financial markets, changing societal expectations and corporate governance scandals have increased the attention for the fiduciary duties of non-executive directors. In this context, recent corporate governance reform initiatives have emphasised the control task and independence of non-executive directors. However, little attention has been paid to their impact on the external and internal service tasks of non-executive directors. Therefore, this paper investigates how the service tasks of non-executive directors have evolved in the Netherlands. Data on corporate governance at the top-100 listed companies in the Netherlands between 1997 and 2005 show that the emphasis on non-executive directors' external service task has shifted to their internal service task, i.e. from non-executive directors acting as boundary spanners to non-executive directors providing advice and counselling to executive directors. This shift in board responsibilities affects non-executive directors' ability to generate network benefits through board relationships and has implications for non-executive directors' functional requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current approaches to the regulation of coal mining activities in Australia have facilitated the extraction of substantial amounts of coal and coal seam gas. The regulation of coal mining activities must now achieve the reduction or mitigation of greenhouse gas emissions in order to address the challenge of climate change and achieve ecologically sustainable development. Several legislative mechanisms currently exist which appear to offer the means to bring about the reduction or mitigation of greenhouse gas emissions from coal mining activities, yet Australia’s emissions from coal mining continue to rise. This article critiques these existing legislative mechanisms and presents recommendations for reform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a growing desire for boards of nonprofits to deliver better governance to the organizations they control. Consequently, self-evaluation has become an important tool for nonprofit boards to meet these expectations and demonstrate that they are discharging their responsibilities effectively. This article describes initial results aimed at developing a psychometrically sound, survey-based board evaluation instrument, based on the Team Development Survey (TDS), that assesses the team attributes of an organization’s board. Our results indicate that while constructs applicable to teams generally appear to apply to boards, there are also important differences. We highlight how a perception of board objective clarity, appropriate skills mix, resource availability, and psychological safety were positively and significantly associated with measures of board, management and organizational performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Texas Department of Transportation (TxDOT) is concerned about the widening gap between preservation needs and available funding. Funding levels are not adequate to meet the preservation needs of the roadway network; therefore projects listed in the 4-Year Pavement Management Plan must be ranked to determine which projects should be funded now and which can be postponed until a later year. Currently, each district uses locally developed methods to prioritize projects. These ranking methods have relied on less formal qualitative assessments based on engineers’ subjective judgment. It is important for TxDOT to have a 4-Year Pavement Management Plan that uses a transparent, rational project ranking process. The objective of this study is to develop a conceptual framework that describes the development of the 4-Year Pavement Management Plan. It can be largely divided into three Steps; 1) Network-Level project screening process, 2) Project-Level project ranking process, and 3) Economic Analysis. A rational pavement management procedure and a project ranking method accepted by districts and the TxDOT administration will maximize efficiency in budget allocations and will potentially help improve pavement condition. As a part of the implementation of the 4-Year Pavement Management Plan, the Network-Level Project Screening (NLPS) tool including the candidate project identification algorithm and the preliminary project ranking matrix was developed. The NLPS has been used by the Austin District Pavement Engineer (DPE) to evaluate PMIS (Pavement Management Information System) data and to prepare a preliminary list of candidate projects for further evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work focuses on the development of a stand-alone gas nanosensor node, powered by solar energy to track concentration of polluted gases such as NO2, N2O, and NH3. Gas sensor networks have been widely developed over recent years, but the rise of nanotechnology is allowing the creation of a new range of gas sensors [1] with higher performance, smaller size and an inexpensive manufacturing process. This work has created a gas nanosensor node prototype to evaluate future field performance of this new generation of sensors. The sensor node has four main parts: (i) solar cells; (ii) control electronics; (iii) gas sensor and sensor board interface [2-4]; and (iv) data transmission. The station is remotely monitored through wired (ethernet cable) or wireless connection (radio transmitter) [5, 6] in order to evaluate, in real time, the performance of the solar cells and sensor node under different weather conditions. The energy source of the node is a module of polycrystalline silicon solar cells with 410cm2 of active surface. The prototype is equipped with a Resistance-To-Period circuit [2-4] to measure the wide range of resistances (KΩ to GΩ) from the sensor in a simple and accurate way. The system shows high performance on (i) managing the energy from the solar panel, (ii) powering the system load and (iii) recharging the battery. The results show that the prototype is suitable to work with any kind of resistive gas nanosensor and provide useful data for future nanosensor networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coal Seam Gas (CSG) is a form of natural gas (mainly methane) sorbed in underground coal beds. To mine this gas, wells are drilled directly into an underground coal seam and groundwater (CSG water) is pumped out to the surface. This lowers the downhole piezometric pressure and enables gas desporption from the coal matrix. In the United States, this gas has been extracted commercially since the 1980s. The economic success of US CSG projects has inspired exploration and development in Australia and New Zealand. In Australia, Queensland’s Bowen and Surat basins have been the subject of increased CSG development over the last decade. CSG growth in other Australian basins has not matured to the same level but exploration and development are taking place at an accelerated pace in the Sydney Basin (Illawarra and the Hunter Valley, NSW) and in the Gunnedah Basin. Similarly, CSG exploration in New Zealand has focused in the Waikato region (Maramarua and Huntly), in the West Coast region (Buller, Reefton, and Greymouth), and in Southland (Kaitangata, Mataura, and Ohai). Figure 1 shows a Shcoeller diagram with CSG samples from selected basins in Australia, New Zealand, and the USA. CSG water from all of these basins exhibit the same geochemical signature – low calcium, low magnesium, high bicarbonate, low sulphate and, sometimes, high chloride. This water quality is a direct result of specific biological and geological processes that have taken part in the formation of CSG. In general, these processes include the weathering of rocks (carbonates, dolomite, and halite), cation exchange with clays (responsible for enhanced sodium and depleted calcium and magnesium), and biogenic processes (accounting for the presence of high bicarbonate concentrations). The salinity of CSG waters tends to be brackish (TDS < 30000 mg/l) with a fairly neutral pH. These particular characteristics need to be taken into consideration when assessing water management and disposal alternatives. Environmental issues associated with CSG water disposal have been prominent in developed basins such as the Powder River Basin (PRB) in the United States. When disposed on the land or used for irrigation, water having a high dissolved salts content may reduce water availability to crops thus affecting crop yield. In addition, the high sodium, low calcium and low magnesium concentrations increase the potential to disperse soils and significantly reduce the water infiltration rate. Therefore, CSG waters need to be properly characterised, treated, and disposed to safeguard the environment without compromising other natural resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Clean Development Mechanism (CDM) has been praised for its ingenuity in mobilising finance to implement sustainable development practices in non-industrialised countries (known as Non-Annex 1 parties under the Kyoto Protocol). During the first commitment period of the Kyoto Protocol (2008-2012), a large number of clean development mechanism projects have been registered with the CDM board. In addition to the large number of registered CDM projects, there are significant numbers of proposed projects stalled in implementation due to the cumbersome and lengthy CDM approval process. Despite this regulatory criticism it is recognised that the role performed by the CDM is essential for achieving a significant reduction in global green house gas emissions. This is because the CDM funds sustainable development in countries that lack capacity to do so on their own. It is anticipated that some form of CDM instrument will continue post the 2012 timeframe and that reform of the mechanism will be focused around making the mechanism’s approval and implementation processes faster and more efficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EnviroDevelopment National Board of Management board member, Lyndall Bryant, has recently conducted research into environmental rating tools and how their environmental benefits within residential land developments can be quantified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a renewable energy source, wind power is playing an increasingly important role in China’s electricity supply. Meanwhile, China is also the world’s largest market for Clean Development Mechanism (CDM) wind power projects. Based on the data of 27 wind power projects of Inner Mongolia registered with the Executive Board of the United Nations (EB) in 2010, this paper constructs a financial model of Net Present Value (NPV) to analyze the cost of wind power electricity. A sensitivity analysis is then conducted to examine the impact of different variables with and without Certified Emission Reduction (CER) income brought about by the CDM. It is concluded that the CDM, along with static investment and annual wind electricity production, is one of the most significant factors in promoting the development of wind power in China. Additionally, wind power is envisaged as a practical proposition for competing with thermal power if the appropriate actions identified in the paper are made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The adoption of continuing professional development (CPD) in Australia is still relatively new [expand]. There is limited information on how Australian pharmacists have engaged with the CPD requirements for registration. Aim To explore Australian registered pharmacists’ understanding and engagement with the requirement for CPD credits for registration. Method The Pharmacy Board of Australia’s CPD requirements for registration was used as a guide to design an online survey to ascertain Australian pharmacists understanding and engagement in the acquisition of CPD credits for registration. Results A total of 278 pharmacists responded to the survey – 66% were female and 30% were male (4% did not disclose their gender). 63% of respondents felt that it would not be difficult to acquire 40 CPD credits annually; with pharmacists identifying that Group 1 activities were a preferred way of acquiring CPD credits. The majority of pharmacists (91%) believed that they knew what the current CPD requirements for general registration are and 77% felt that there has been enough guidance provided to assist them. Despite this, 26% of participants had never used self directed learning plans and 38% did not know how to undertake self-directed learning. 76% of participants were under the common misconception that CPD is synonymous with continuing education. Conclusion The majority of registered pharmacists believe they understand and can engage in the acquisition of CPD credits for registration. However, some aspects of the process was not understood. The key link of how this process aims to develop individual practice needs to be further developed within the profession.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contrast-matching ultrasmall-angle neutron scattering (USANS) and small-angle neutron scattering (SANS) techniques were used for the first time to determine both the total pore volume and the fraction of the pore volume that is inaccessible to deuterated methane, CD4, in four bituminous coals in the range of pore sizes between ∼10 Å and ∼5 μm. Two samples originated from the Illinois Basin in the U.S.A., and the other two samples were commercial Australian bituminous coals from the Bowen Basin. The total and inaccessible porosity were determined in each coal using both Porod invariant and the polydisperse spherical particle (PDSP) model analysis of the scattering data acquired from coals both in vacuum and at the pressure of CD4, at which the scattering length density of the pore-saturating fluid is equal to that of the solid coal matrix (zero average contrast pressure). The total porosity of the coals studied ranged from 7 to 13%, and the volume of pores inaccessible to CD4 varied from ∼13 to ∼36% of the total pore volume. The volume fraction of inaccessible pores shows no correlation with the maceral composition; however, it increases with a decreasing total pore volume. In situ measurements of the structure of one coal saturated with CO2 and CD4 were conducted as a function of the pressure in the range of 1−400 bar. The neutron scattering intensity from small pores with radii less than 35 Å in this coal increased sharply immediately after the fluid injection for both gases, which demonstrates strong condensation and densification of the invading subcritical CO2 and supercritical methane in small pores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluid–solid interactions in natural and engineered porous solids underlie a variety of technological processes, including geological storage of anthropogenic greenhouse gases, enhanced coal bed methane recovery, membrane separation, and heterogeneous catalysis. The size, distribution and interconnectivity of pores, the chemical and physical properties of the solid and fluid phases collectively dictate how fluid molecules migrate into and through the micro- and meso-porous media, adsorb and ultimately react with the solid surfaces. Due to the high penetration power and relatively short wavelength of neutrons, smallangle neutron scattering (SANS) as well as ultra small-angle scattering (USANS) techniques are ideally suited for assessing the phase behavior of confined fluids under pressure as well as for evaluating the total porosity in engineered and natural porous systems including coal. Here we demonstrate that SANS and USANS can be also used for determining the fraction of the pore volume that is actually accessible to fluids as a function of pore sizes and study the fraction of inaccessible pores as a function of pore size in three coals from the Illinois Basin (USA) and Bowen Basin (Australia). Experiments were performed at CO2 and methane pressures up to 780 bar, including pressures corresponding to zero average contrast condition (ZAC), which is the pressure where no scattering from the accessible pores occurs. Scattering curves at the ZAC were compared with the scattering from same coals under vacuum and analysed using a newly developed approach that shows that the volume fraction of accessible pores in these coals varies between �90% in the macropore region to �30% in the mesopore region and the variation is distinctive for each of the examined coals. The developed methodology may be also applied for assessing the volume of accessible pores in other natural underground formations of interest for CO2 sequestration, such as saline aquifers as well as for estimating closed porosity in engineered porous solids of technological importance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND There is a growing volume of open source ‘education material’ on energy efficiency now available however the Australian government has identified a need to increase the use of such materials in undergraduate engineering education. Furthermore, there is a reported need to rapidly equip engineering graduates with the capabilities in conducting energy efficiency assessments, to improve energy performance across major sectors of the economy. In January 2013, building on several years of preparatory action-research initiatives, the former Department of Industry, Innovation, Climate Change, Science, Research and Tertiary Education (DIICCSRTE) offered $600,000 to develop resources for energy efficiency related graduate attributes, targeting Engineers Australia college disciplines, accreditation requirements and opportunities to address such requirements. PURPOSE This paper discusses a $430,000 successful bid by a university consortium led by QUT and including RMIT, UA, UOW, and VU, to design and pilot several innovative, targeted open-source resources for curriculum renewal related to energy efficiency assessments, in Australian engineering programs (2013-2014), including ‘flat-pack’, ‘media-bites’, ‘virtual reality’ and ‘deep dive’ case study initiatives. DESIGN/ METHOD The paper draws on literature review and lessons learned by the consortium partners in resource development over the last several years to discuss methods for selecting key graduate attributes and providing targeted resources, supporting materials, and innovative delivery options to assist universities deliver knowledge and skills to develop such attributes. This includes strategic industry and key stakeholders engagement. The paper also discusses processes for piloting, validating, peer reviewing, and refining these resources using a rigorous and repeatable approach to engaging with academic and industry colleagues. RESULTS The paper provides an example of innovation in resource development through an engagement strategy that takes advantage of existing networks, initiatives, and funding arrangements, while informing program accreditation requirements, to produce a cost-effective plan for rapid integration of energy efficiency within education. By the conference, stakeholder workshops will be complete. Resources will be in the process of being drafted, building on findings from the stakeholder engagement workshops. Reporting on this project “in progress” provides a significant opportunity to share lessons learned and take on board feedback and input. CONCLUSIONS This paper provides a useful reference document for others considering significant resource development in a consortium approach, summarising benefits and challenges. The paper also provides a basis for documenting the second half of the project, which comprises piloting resources and producing a ‘good practice guide’ for energy efficiency related curriculum renewal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, two landmark reports on antiangiogenic therapy were published: Paez-Ribes and colleagues and Ebos and colleagues . The Board of the Metastasis Research Society (MRS) congratulates the authors for their informative articles that help to explain the puzzle of why antiangiogenic agents have had a relatively minor or no significant impact on patient survival. Using four model systems and several different strategies, these researchers showed that inhibition of angiogenesis reduced primary tumor growth and microvessel density in keeping with many earlier reports, but strikingly, accelerated invasion and metastasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monitoring gases for environmental, industrial and agricultural fields is a demanding task that requires long periods of observation, large quantity of sensors, data management, high temporal and spatial resolution, long term stability, recalibration procedures, computational resources, and energy availability. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) are currently representing the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialised gas sensing systems, and offer the possibility of geo-located and time stamp samples. However, these technologies are not fully functional for scientific and commercial applications as their development and availability is limited by a number of factors: the cost of sensors required to cover large areas, their stability over long periods, their power consumption, and the weight of the system to be used on small UAVs. Energy availability is a serious challenge when WSN are deployed in remote areas with difficult access to the grid, while small UAVs are limited by the energy in their reservoir tank or batteries. Another important challenge is the management of data produced by the sensor nodes, requiring large amount of resources to be stored, analysed and displayed after long periods of operation. In response to these challenges, this research proposes the following solutions aiming to improve the availability and development of these technologies for gas sensing monitoring: first, the integration of WSNs and UAVs for environmental gas sensing in order to monitor large volumes at ground and aerial levels with a minimum of sensor nodes for an effective 3D monitoring; second, the use of solar energy as a main power source to allow continuous monitoring; and lastly, the creation of a data management platform to store, analyse and share the information with operators and external users. The principal outcomes of this research are the creation of a gas sensing system suitable for monitoring any kind of gas, which has been installed and tested on CH4 and CO2 in a sensor network (WSN) and on a UAV. The use of the same gas sensing system in a WSN and a UAV reduces significantly the complexity and cost of the application as it allows: a) the standardisation of the signal acquisition and data processing, thereby reducing the required computational resources; b) the standardisation of calibration and operational procedures, reducing systematic errors and complexity; c) the reduction of the weight and energy consumption, leading to an improved power management and weight balance in the case of UAVs; d) the simplification of the sensor node architecture, which is easily replicated in all the nodes. I evaluated two different sensor modules by laboratory, bench, and field tests: a non-dispersive infrared module (NDIR) and a metal-oxide resistive nano-sensor module (MOX nano-sensor). The tests revealed advantages and disadvantages of the two modules when used for static nodes at the ground level and mobile nodes on-board a UAV. Commercial NDIR modules for CO2 have been successfully tested and evaluated in the WSN and on board of the UAV. Their advantage is the precision and stability, but their application is limited to a few gases. The advantages of the MOX nano-sensors are the small size, low weight, low power consumption and their sensitivity to a broad range of gases. However, selectivity is still a concern that needs to be addressed with further studies. An electronic board to interface sensors in a large range of resistivity was successfully designed, created and adapted to operate on ground nodes and on-board UAV. The WSN and UAV created were powered with solar energy in order to facilitate outdoor deployment, data collection and continuous monitoring over large and remote volumes. The gas sensing, solar power, transmission and data management systems of the WSN and UAV were fully evaluated by laboratory, bench and field testing. The methodology created to design, developed, integrate and test these systems was extensively described and experimentally validated. The sampling and transmission capabilities of the WSN and UAV were successfully tested in an emulated mission involving the detection and measurement of CO2 concentrations in a field coming from a contaminant source; the data collected during the mission was transmitted in real time to a central node for data analysis and 3D mapping of the target gas. The major outcome of this research is the accomplishment of the first flight mission, never reported before in the literature, of a solar powered UAV equipped with a CO2 sensing system in conjunction with a network of ground sensor nodes for an effective 3D monitoring of the target gas. A data management platform was created using an external internet server, which manages, stores, and shares the data collected in two web pages, showing statistics and static graph images for internal and external users as requested. The system was bench tested with real data produced by the sensor nodes and the architecture of the platform was widely described and illustrated in order to provide guidance and support on how to replicate the system. In conclusion, the overall results of the project provide guidance on how to create a gas sensing system integrating WSNs and UAVs, how to power the system with solar energy and manage the data produced by the sensor nodes. This system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, zoology, and botanical studies opening the way to an ubiquitous low cost environmental monitoring, which may help to decrease our carbon footprint and to improve the health of the planet.