716 resultados para INTERACTION NETWORKS
The Arab Spring and its social media audiences : English and Arabic Twitter users and their networks
Resumo:
2011 ‘Arab Spring’ are likely to overstate the impact of Facebook and Twitter on these uprisings, it is nonetheless true that protests and unrest in countries from Tunisia to Syria generated a substantial amount of social media activity. On Twitter alone, several millions of tweets containing the hashtags #libya or #egypt were generated during 2011, both by directly affected citizens of these countries, and by onlookers from further afield. What remains unclear, though, is the extent to which there was any direct interaction between these two groups (especially considering potential language barriers between them). Building on hashtag datasets gathered between January and November 2011, this paper compares patterns of Twitter usage during the popular revolution in Egypt and the civil war in Libya. Using custom-made tools for processing ‘big data’, we examine the volume of tweets sent by English-, Arabic-, and mixed-language Twitter users over time, and examine the networks of interaction (variously through @replying, retweeting, or both) between these groups as they developed and shifted over the course of these uprisings. Examining @reply and retweet traffic, we identify general patterns of information flow between the English- and Arabic-speaking sides of the Twittersphere, and highlight the roles played by users bridging both language spheres.
Resumo:
Because moving depictions of face emotion have greater ecological validity than their static counterparts, it has been suggested that still photographs may not engage ‘authentic’ mechanisms used to recognize facial expressions in everyday life. To date, however, no neuroimaging studies have adequately addressed the question of whether the processing of static and dynamic expressions rely upon different brain substrates. To address this, we performed an functional magnetic resonance imaging (fMRI) experiment wherein participants made emotional expression discrimination and Sex discrimination judgements to static and moving face images. Compared to Sex discrimination, Emotion discrimination was associated with widespread increased activation in regions of occipito-temporal, parietal and frontal cortex. These regions were activated both by moving and by static emotional stimuli, indicating a general role in the interpretation of emotion. However, portions of the inferior frontal gyri and supplementary/pre-supplementary motor area showed task by motion interaction. These regions were most active during emotion judgements to static faces. Our results demonstrate a common neural substrate for recognizing static and moving facial expressions, but suggest a role for the inferior frontal gyrus in supporting simulation processes that are invoked more strongly to disambiguate static emotional cues.
Resumo:
We propose a method for learning specific object representations that can be applied (and reused) in visual detection and identification tasks. A machine learning technique called Cartesian Genetic Programming (CGP) is used to create these models based on a series of images. Our research investigates how manipulation actions might allow for the development of better visual models and therefore better robot vision. This paper describes how visual object representations can be learned and improved by performing object manipulation actions, such as, poke, push and pick-up with a humanoid robot. The improvement can be measured and allows for the robot to select and perform the `right' action, i.e. the action with the best possible improvement of the detector.
Resumo:
Networks have come to occupy a key position in the strategic armoury of the government, business and community sectors and now have impact on a broad array of policy and management arenas. An emphasis on relationships, trust and mutuality mean that networks function on a different operating logic to the conventional processes of government and business. It is therefore important that organizational members of networks are able to adopt the skills and culture necessary to operate successfully under these distinctive kinds of arrangements. Because networks function from a different operational logic to traditional bureaucracies, public sector organizations may experience difficulties in adapting to networked arrangements. Networks are formed to address a variety of social problems or meet capability gaps within organizations. As such they are often under pressure to quickly produce measurable outcomes and need to form rapidly and come to full operation quickly. This paper presents a theoretical exploration of how diverse types of networks are required for different management and policy situations and draws on a set of public sector case studies to understand/demonstrate how these various types of networked arrangements may be ‘turbo-charged’ so that they more quickly adopt the characteristics necessary to deliver required outcomes.