90 resultados para INFLUENZA A
Resumo:
Background A pandemic strain of influenza A spread rapidly around the world in 2009, now referred to as pandemic (H1N1) 2009. This study aimed to examine the spatiotemporal variation in the transmission rate of pandemic (H1N1) 2009 associated with changes in local socio-environmental conditions from May 7–December 31, 2009, at a postal area level in Queensland, Australia. Method We used the data on laboratory-confirmed H1N1 cases to examine the spatiotemporal dynamics of transmission using a flexible Bayesian, space–time, Susceptible-Infected-Recovered (SIR) modelling approach. The model incorporated parameters describing spatiotemporal variation in H1N1 infection and local socio-environmental factors. Results The weekly transmission rate of pandemic (H1N1) 2009 was negatively associated with the weekly area-mean maximum temperature at a lag of 1 week (LMXT) (posterior mean: −0.341; 95% credible interval (CI): −0.370–−0.311) and the socio-economic index for area (SEIFA) (posterior mean: −0.003; 95% CI: −0.004–−0.001), and was positively associated with the product of LMXT and the weekly area-mean vapour pressure at a lag of 1 week (LVAP) (posterior mean: 0.008; 95% CI: 0.007–0.009). There was substantial spatiotemporal variation in transmission rate of pandemic (H1N1) 2009 across Queensland over the epidemic period. High random effects of estimated transmission rates were apparent in remote areas and some postal areas with higher proportion of indigenous populations and smaller overall populations. Conclusions Local SEIFA and local atmospheric conditions were associated with the transmission rate of pandemic (H1N1) 2009. The more populated regions displayed consistent and synchronized epidemics with low average transmission rates. The less populated regions had high average transmission rates with more variations during the H1N1 epidemic period.
Resumo:
E-health can facilitate communication and interactions among stakeholders involved in pandemic responses. Its implementation, nevertheless, represents a disruptive change in the healthcare workplace. Organisational preparedness assessment is an essential requirement prior to e-health implementation; including this step in the planning process can increase the chances of programme success. The objective of this study is to develop an e-health preparedness assessment model for pandemic influenza (EHPM4P). Following the Analytic Hierarchy Process (AHP), 20 contextual interviews were conducted with domain experts from May to September 2010. We examined the importance of all preparedness components within a fivedimensional hierarchical framework that was recently published. We also calculated the relative weight for each component at all levels of the hierarchy. This paper presents the hierarchical model (EHPM4P) that can be used to precisely assess healthcare organisational and providers' preparedness for e-health implementation and potentially maximise e-health benefits in the context of an influenza pandemic. Copyright © 2013 Inderscience Enterprises Ltd.
Resumo:
The assembly of influenza A virus at the plasma membrane of infected cells leads to release of enveloped virions that are typically round in tissue culture-adapted strains but filamentous in strains isolated from patients. The viral proteins hemagglutinin (HA), neuraminidase (NA), matrix protein 1 (M1), and M2 ion channel all contribute to virus assembly. When expressed individually or in combination in cells, they can all, under certain conditions, mediate release of membrane-enveloped particles, but their relative roles in virus assembly, release, and morphology remain unclear. To investigate these roles, we produced membrane-enveloped particles by plasmid-derived expression of combinations of HA, NA, and M proteins (M1 and M2) or by infection with influenza A virus. We monitored particle release, particle morphology, and plasma membrane morphology by using biochemical methods, electron microscopy, electron tomography, and cryo-electron tomography. Our data suggest that HA, NA, or HANA (HA plus NA) expression leads to particle release through nonspecific induction of membrane curvature. In contrast, coexpression with the M proteins clusters the glycoproteins into filamentous membrane protrusions, which can be released as particles by formation of a constricted neck at the base. HA and NA are preferentially distributed to differently curved membranes within these particles. Both the budding intermediates and the released particles are morphologically similar to those produced during infection with influenza A virus. Together, our data provide new insights into influenza virus assembly and show that the M segment together with either of the glycoproteins is the minimal requirement to assemble and release membrane-enveloped particles that are truly virus-like.
Resumo:
Introduction: Paramedics and other emergency health workers are exposed to infectious disease particularly when undertaking exposure-prone procedures as a component of their everyday practice. This study examined paramedic knowledge of infectious disease aetiology and transmission in the pre-hospital care environment.--------- Methods: A mail survey of paramedics from an Australian ambulance service (n=2274) was conducted.--------- Results: With a response rate of 55.3% (1258/2274), the study demonstrated that paramedic knowledge of infectious disease aetiology and modes of transmission was poor. Of the 25 infectious diseases included in the survey, only three aetiological agents were correctly identified by at least 80% of respondents. The most accurate responses for aetiology of individual infectious diseases were for HIV/AIDS (91.4%), influenza (87.4%), and hepatitis B (85.7%). Poorest results were observed for pertussis, infectious mononucleosis, leprosy, dengue fever, Japanese B encephalitis and vancomycin resistant enterococcus (VRE), all with less than half the sample providing a correct response. Modes of transmission of significant infectious diseases were also assessed. Most accurate responses were found for HIV/AIDS (85.8%), salmonella (81.9%) and influenza (80.1%). Poorest results were observed for infectious mononucleosis, diphtheria, shigella, Japanese B encephalitis, vancomycin resistant enterococcus, meningococcal meningitis, rubella and infectious mononucleosis, with less than a third of the sample providing a correct response.--------- Conclusions: Results suggest that knowledge of aetiology and transmission of infectious disease is generally poor amongst paramedics. A comprehensive in-service education infection control programs for paramedics with emphasis on infectious disease aetiology and transmission is recommended.
Resumo:
Aims: Influenza is commonly spread by infectious aerosols; however, detection of viruses in aerosols is not sensitive enough to confirm the characteristics of virus aerosols. The aim of this study was to develop an assay for respiratory viruses sufficiently sensitive to be used in epidemiological studies. Method: A two-step, nested real-time PCR assay was developed for MS2 bacteriophage, and for influenza A and B, parainfluenza 1 and human respiratory syncytial virus. Outer primer pairs were designed to nest each existing real-time PCR assay. The sensitivities of the nested real-time PCR assays were compared to those of existing real-time PCR assays. Both assays were applied in an aerosol study to compare their detection limits in air samples. Conclusions: The nested real-time PCR assays were found to be several logs more sensitive than the real-time PCR assays, with lower levels of virus detected at lower Ct values. The nested real-time PCR assay successfully detected MS2 in air samples, whereas the real-time assay did not. Significance and Impact of the Study: The sensitive assays for respiratory viruses will permit further research using air samples from naturally generated virus aerosols. This will inform current knowledge regarding the risks associated with the spread of viruses through aerosol transmission.
Resumo:
In recent years the air transport industry has experienced unprecedented growth, driven by strong local and global economies. Whether this growth can continue in the face of anticipated oil crises; international economic forecasts and recent influenza outbreaks is yet to be seen. One thing is certain, airport owners and operators will continue to be faced with challenging environments in which to do business. In response, many airports recognize the value in diversifying their revenue streams through a variety of landside property developments within the airport boundary. In Australia it is the type and intended market of this development that is a point of contention between private airport corporations and their surrounding municipalities. The aim of this preliminary research is to identify and categorize on-airport development occurring at the twenty-two privatized Australian airports which are administered under the Airports Act [1996]. This new knowledge will assist airport and municipal planners in understanding the current extent and category of on-airport land use, allowing them to make better decisions when proposing development both within airport master plans and beyond the airport boundary in local town and municipal plans.
Resumo:
Introduction: The core business of public health is to protect and promote health in the population. Public health planning is the means to maximise these aspirations. Health professionals develop plans to address contemporary health priorities as the evidence about changing patterns of mortality and morbidity is presented. Officials are also alert to international trends in patterns of disease that have the potential to affect the health of Australians. Integrated planning and preparation is currently underway involving all emergency health services, hospitals and population health units to ensure Australia's quick and efficient response to any major infectious disease outbreak, such as avian influenza (bird flu). Public health planning for the preparations for the Sydney Olympics and Paralympic Games in 2000 took almost three years. ‘Its major components included increased surveillance of communicable disease; presentations to sentinel emergency departments; medical encounters at Olympic venues; cruise ship surveillance; environmental and food safety inspections; bioterrorism surveillance and global epidemic intelligence’ (Jorm et al 2003, 102). In other words, the public health plan was developed to ensure food safety, hospital capacity, safe crowd control, protection against infectious diseases, and an integrated emergency and disaster plan. We have national and state plans for vaccinating children against infectious diseases in childhood; plans to promote dental health for children in schools; and screening programs for cervical, breast and prostate cancer. An effective public health response to a change in the distribution of morbidity and mortality requires planning. All levels of government plan for the public’s health. Local governments (councils) ensure healthy local environments to protect the public’s health. They plan parks for recreation, construct traffic-calming devices near schools to prevent childhood accidents, build shade structures and walking paths, and even embed drafts/chess squares in tables for people to sit and play. Environmental Health officers ensure food safety in restaurants and measure water quality. These public health measures attempt to promote the quality of life of residents. Australian and state governments produce plans that protect and promote health through various policy and program initiatives and innovations. To be effective, program plans need to be evaluated. However, building an integrated evaluation plan into a program plan is often forgotten, as planning and evaluation are seen as two distinct entities. Consequently, it is virtually impossible to measure, with any confidence, the extent to which a program has achieved its goals and objectives. This chapter introduces you to the concepts of public health program planning and evaluation. Case studies and reflection questions are presented to illustrate key points. As various authors use different terminology to describe the same concepts/actions of planning and evaluation, the glossary at the back of this book will help you to clarify the terms used in this chapter.
Resumo:
Introduction: Little is known about the risk perceptions and attitudes of healthcare personnel, especially of emergency prehospital medical care personnel, regarding the possibility of an outbreak or epidemic event. Problem: This study was designed to investigate pre-event knowledge and attitudes of a national sample of the emergency prehospital medical care providers in relation to a potential human influenza pandemic, and to determine predictors of these attitudes. Methods: Surveys were distributed to a random, cross-sectional sample of 20% of the Australian emergency prehospital medical care workforce (n = 2,929), stratified by the nine services operating in Australia, as well as by gender and location. The surveys included: (1) demographic information; (2) knowledge of influenza; and (3) attitudes and perceptions related to working during influenza pandemic conditions. Multiple logistic regression models were constructed to identify predictors of pandemic-related risk perceptions. Results: Among the 725 Australian emergency prehospital medical care personnel who responded, 89% were very anxious about working during pandemic conditions, and 85% perceived a high personal risk associated with working in such conditions. In general, respondents demonstrated poor knowledge in relation to avian influenza, influenza generally, and infection transmission methods. Less than 5% of respondents perceived that they had adequate education/training about avian influenza. Logistic regression analyses indicate that, in managing the attitudes and risk perceptions of emergency prehospital medical care staff, particular attention should be directed toward the paid, male workforce (as opposed to volunteers), and on personnel whose relationship partners do not work in the health industry. Conclusions: These results highlight the potentially crucial role of education and training in pandemic preparedness. Organizations that provide emergency prehospital medical care must address this apparent lack of knowledge regarding infection transmission, and procedures for protection and decontamination. Careful management of the perceptions of emergency prehospital medical care personnel during a pandemic is likely to be critical in achieving an effective response to a widespread outbreak of infectious disease.
Resumo:
Influenza is a widespread disease occurring in seasonal epidemics, and each year is responsible for up to 500,000 deaths worldwide. Influenza can develop into strains which cause severe symptoms and high mortality rates, and could potentially reach pandemic status if the virus’ properties allow easy transmission. Influenza is transmissible via contact with the virus, either directly (infected people) or indirectly (contaminated objects); via reception of large droplets over short distances (one metre or less); or through inhalation of aerosols containing the virus expelled by infected individuals during respiratory activities, that can remain suspended in the air and travel distances of more than one metre (the aerosol route). Aerosol transmission of viruses involves three stages: production of the droplets containing viruses; transport of the droplets and ability of a virus to remain intact and infectious; and reception of the droplets (via inhalation). Our understanding of the transmission of influenza viruses via the aerosol route is poor, and thus our ability to prevent a widespread outbreak is limited. This study explored the fate of viruses in droplets by investigating the effects of some physical factors on the recovery of both a bacteriophage model and influenza virus. Experiments simulating respiratory droplets were carried out using different types of droplets, generated from a commonly used water-like matrix, and also from an ‘artificial mucous’ matrix which was used to more closely resemble respiratory fluids. To detect viruses in droplets, we used the traditional plaque assay techniques, and also a sensitive, quantitative PCR assay specifically developed for this study. Our results showed that the artificial mucous suspension enhanced the recovery of infectious bacteriophage. We were able to report detection limits of infectious bacteriophage (no bacteriophage was detected by the plaque assay when aerosolised from a suspension of 103 PFU/mL, for three of the four droplet types tested), and that bacteriophage could remain infectious in suspended droplets for up to 20 minutes. We also showed that the nested real-time PCR assay was able to detect the presence of bacteriophage RNA where the plaque assay could not detect any intact particles. Finally, when applying knowledge from the bacteriophage experiments, we reported the quantitative recoveries of influenza viruses in droplets, which were more consistent and stable than we had anticipated. Influenza viruses can be detected up to 20 minutes (after aerosolisation) in suspended aerosols and possibly beyond. It also was detectable from nebulising suspensions with relatively low concentrations of viruses.
Resumo:
Humankind has been dealing with all kinds of disasters since the dawn of time. The risk and impact of disasters producing mass casualties worldwide is increasing, due partly to global warming as well as to increased population growth, increased density and the aging population. China, as a country with a large population, vast territory, and complex climatic and geographical conditions, has been plagued by all kinds of disasters. Disaster health management has traditionally been a relatively arcane discipline within public health. However, SARS, Avian Influenza, and earthquakes and floods, along with the need to be better prepared for the Olympic Games in China has brought disasters, their management and their potential for large scale health consequences on populations to the attention of the public, the government and the international community alike. As a result significant improvements were made to the disaster management policy framework, as well as changes to systems and structures to incorporate an improved disaster management focus. This involved the upgrade of the Centres for Disease Control and Prevention (CDC) throughout China to monitor and better control the health consequences particularly of infectious disease outbreaks. However, as can be seen in the Southern China Snow Storm and Wenchuan Earthquake in 2008, there remains a lack of integrated disaster management and efficient medical rescue, which has been costly in terms of economics and health for China. In the context of a very large and complex country, there is a need to better understand whether these changes have resulted in effective management of the health impacts of such incidents. To date, the health consequences of disasters, particularly in China, have not been a major focus of study. The main aim of this study is to analyse and evaluate disaster health management policy in China and in particular, its ability to effectively manage the health consequences of disasters. Flood has been selected for this study as it is a common and significant disaster type in China and throughout the world. This information will then be used to guide conceptual understanding of the health consequences of floods. A secondary aim of the study is to compare disaster health management in China and Australia as these countries differ in their length of experience in having a formalised policy response. The final aim of the study is to determine the extent to which Walt and Gilson’s (1994) model of policy explains how disaster management policy in China was developed and implemented after SARS in 2003 to the present day. This study has utilised a case study methodology. A document analysis and literature search of Chinese and English sources was undertaken to analyse and produce a chronology of disaster health management policy in China. Additionally, three detailed case studies of flood health management in China were undertaken along with three case studies in Australia in order to examine the policy response and any health consequences stemming from the floods. A total of 30 key international disaster health management experts were surveyed to identify fundamental elements and principles of a successful policy framework for disaster health management. Key policy ingredients were identified from the literature, the case-studies and the survey of experts. Walt and Gilson (1994)’s policy model that focuses on the actors, content, context and process of policy was found to be a useful model for analysing disaster health management policy development and implementation in China. This thesis is divided into four parts. Part 1 is a brief overview of the issues and context to set the scene. Part 2 examines the conceptual and operational context including the international literature, government documents and the operational environment for disaster health management in China. Part 3 examines primary sources of information to inform the analysis. This involves two key studies: • A comparative analysis of the management of floods in China and Australia • A survey of international experts in the field of disaster management so as to inform the evaluation of the policy framework in existence in China and the criteria upon which the expression of that policy could be evaluated Part 4 describes the key outcomes of this research which include: • A conceptual framework for describing the health consequences of floods • A conceptual framework for disaster health management • An evaluation of the disaster health management policy and its implementation in China. The research outcomes clearly identified that the most significant improvements are to be derived from improvements in the generic management of disasters, rather than the health aspects alone. Thus, the key findings and recommendations tend to focus on generic issues. The key findings of this research include the following: • The health consequences of floods may be described in terms of time as ‘immediate’, ‘medium term’ and ‘long term’ and also in relation to causation as ‘direct’ and ‘indirect’ consequences of the flood. These two aspects form a matrix which in turn guides management responses. • Disaster health management in China requires a more comprehensive response throughout the cycle of prevention, preparedness, response and recovery but it also requires a more concentrated effort on policy implementation to ensure the translation of the policy framework into effective incident management. • The policy framework in China is largely of international standard with a sound legislative base. In addition the development of the Centres for Disease Control and Prevention has provided the basis for a systematic approach to health consequence management. However, the key weaknesses in the current system include: o The lack of a key central structure to provide the infrastructure with vital support for policy development, implementation and evaluation. o The lack of well-prepared local response teams similar to local government based volunteer groups in Australia. • The system lacks structures to coordinate government action at the local level. The result of this is a poorly coordinated local response and lack of clarity regarding the point at which escalation of the response to higher levels of government is advisable. These result in higher levels of risk and negative health impacts. The key recommendations arising from this study are: 1. Disaster health management policy in China should be enhanced by incorporating disaster management considerations into policy development, and by requiring a disaster management risk analysis and disaster management impact statement for development proposals. 2. China should transform existing organizations to establish a central organisation similar to the Federal Emergency Management Agency (FEMA) in the USA or the Emergency Management Australia (EMA) in Australia. This organization would be responsible for leading nationwide preparedness through planning, standards development, education and incident evaluation and to provide operational support to the national and local government bodies in the event of a major incident. 3. China should review national and local plans to reflect consistency in planning, and to emphasize the advantages of the integrated planning process. 4. Enhance community resilience through community education and the development of a local volunteer organization. China should develop a national strategy which sets direction and standards in regard to education and training, and requires system testing through exercises. Other initiatives may include the development of a local volunteer capability with appropriate training to assist professional response agencies such as police and fire services in a major incident. An existing organisation such as the Communist Party may be an appropriate structure to provide this response in a cost effective manner. 5. Continue development of professional emergency services, particularly ambulance, to ensure an effective infrastructure is in place to support the emergency response in disasters. 6. Funding for disaster health management should be enhanced, not only from government, but also from other sources such as donations and insurance. It is necessary to provide a more transparent mechanism to ensure the funding is disseminated according to the needs of the people affected. 7. Emphasis should be placed on prevention and preparedness, especially on effective disaster warnings. 8. China should develop local disaster health management infrastructure utilising existing resources wherever possible. Strategies for enhancing local infrastructure could include the identification of local resources (including military resources) which could be made available to support disaster responses. It should develop operational procedures to access those resources. Implementation of these recommendations should better position China to reduce the significant health consequences experienced each year from major incidents such as floods and to provide an increased level of confidence to the community about the country’s capacity to manage such events.
Resumo:
Background: Room ventilation is a key determinant of airborne disease transmission. Despite this, ventilation guidelines in hospitals are not founded on robust scientific evidence related to prevention of airborne transmission. Methods: We sought to assess the effect of ventilation rates on influenza, tuberculosis (TB) and rhinovirus infection risk within three distinct rooms in a major urban hospital; a Lung Function Laboratory, Emergency Department (ED) Negative-pressure Isolation Room and an Outpatient Consultation Room were investigated. Air exchange rate measurements were performed in each room using CO2 as a tracer. Gammaitoni and Nucci’s model was employed to estimate infection risk. Results: Current outdoor air exchange rates in the Lung Function Laboratory and ED Isolation Room limited infection risks to between 0.1 and 3.6%. Influenza risk for individuals entering an Outpatient Consultation Room after an infectious individual departed ranged from 3.6 to 20.7%, depending on the duration for which each person occupied the room. Conclusions: Given the absence of definitive ventilation guidelines for hospitals, air exchange measurements combined with modelling afford a useful means of assessing, on a case-by-case basis, the suitability of room ventilation at preventing airborne disease transmission.
Resumo:
A century ago, as the Western world embarked on a period of traumatic change, the visual realism of photography and documentary film brought print and radio news to life. The vision that these new mediums threw into stark relief was one of intense social and political upheaval: the birth of modernity fired and tempered in the crucible of the Great War. As millions died in this fiery chamber and the influenza pandemic that followed, lines of empires staggered to their fall, and new geo-political boundaries were scored in the raw, red flesh of Europe. The decade of 1910 to 1919 also heralded a prolific period of artistic experimentation. It marked the beginning of the social and artistic age of modernity and, with it, the nascent beginnings of a new art form: film. We still live in the shadow of this violent, traumatic and fertile age; haunted by the ghosts of Flanders and Gallipoli and its ripples of innovation and creativity. Something happened here, but to understand how and why is not easy; for the documentary images we carry with us in our collective cultural memory have become what Baudrillard refers to as simulacra. Detached from their referents, they have become referents themselves, to underscore other, grand narratives in television and Hollywood films. The personal histories of the individuals they represent so graphically–and their hope, love and loss–are folded into a national story that serves, like war memorials and national holidays, to buttress social myths and values. And, as filmic images cross-pollinate, with each iteration offering a new catharsis, events that must have been terrifying or wondrous are abstracted. In this paper we first discuss this transformation through reference to theories of documentary and memory–this will form a conceptual framework for a subsequent discussion of the short film Anmer. Produced by the first author in 2010, Anmer is a visual essay on documentary, simulacra and the symbolic narratives of history. Its form, structure and aesthetic speak of the confluence of documentary, history, memory and dream. Located in the first decade of the twentieth century, its non-linear narratives of personal tragedy and poetic dreamscapes are an evocative reminder of the distance between intimate experience, grand narratives, and the mythologies of popular films. This transformation of documentary sources not only played out in the processes of the film’s production, but also came to form its theme.
Resumo:
The Six Sigma technique is one of the quality management strategies and is utilised for improving the quality and productivity in the manufacturing process. It is inspired by the two major project methodologies of Deming’s "Plan – Do – Check – Act (PDCA)" Cycle which consists of DMAIC and DMADV. Those two methodologies are comprised of five phases. The DMAIC project methodology will be comprehensively used in this research. In brief, DMAIC is utilised for improving the existing manufacturing process and it involves the phases Define, Measure, Analyse, Improve, and Control. Mask industry has become a significant industry in today’s society since the outbreak of some serious diseases such as the Severe Acute Respiratory Syndrome (SARS), bird flu, influenza, swine flu and hay fever. Protecting the respiratory system, then, has become the fundamental requirement for preventing respiratory deceases. Mask is the most appropriate and protective product inasmuch as it is effective in protecting the respiratory tract and resisting the virus infection through air. In order to satisfy various customers’ requirements, thousands of mask products are designed in the market. Moreover, masks are also widely used in industries including medical industries, semi-conductor industries, food industries, traditional manufacturing, and metal industries. Notwithstanding the quality of masks have become the prioritisations since they are used to prevent dangerous diseases and safeguard people, the quality improvement technique are of very high significance in mask industry. The purpose of this research project is firstly to investigate the current quality control practices in a mask industry, then, to explore the feasibility of using Six Sigma technique in that industry, and finally, to implement the Six Sigma technique in the case company to develop and evaluate the product quality process. This research mainly investigates the quality problems of musk industry and effectiveness of six sigma technique in musk industry with the United Excel Enterprise Corporation (UEE) Company as a case company. The DMAIC project methodology in the Six Sigma technique is adopted and developed in this research. This research makes significant contribution to knowledge. The main results contribute to the discovering the root causes of quality problems in a mask industry. Secondly, the company was able to increase not only acceptance rate but quality level by utilising the Six Sigma technique. Hence, utilising the Six Sigma technique could increase the production capacity of the company. Third, the Six Sigma technique is necessary to be extensively modified to improve the quality control in the mask industry. The impact of the Six Sigma technique on the overall performance in the business organisation should be further explored in future research.
Resumo:
Recent findings concerning exhaled aerosol size distributions and the regions in the respiratory tract in which they are generated could have significant implications for human to human spread of lower respiratory tract-specific infections. Even in healthy people, measurable quantities of aerosol are routinely generated from the Lower Respiratory Tract (LRT) during breathing(1-3). We have found that there at least three modes in the exhaled aerosol size distribution of healthy adults(4) (see Figure 1). These modes each have a characteristic size and arise from different parts of the respiratory tract. The respiratory bronchioles produce aerosol during breathing, the larynx during speech and the oral cavity also during speech. The model of the resulting droplet size distribution is therefore called the Bronchial Laryngeal Oral (B.L.O.) tri-modal model of expired aerosol.