39 resultados para HueyCobra (Helicopter)
Resumo:
This paper presents a disturbance attenuation controller for horizontal position stabilization for hover and automatic landings of a Rotary-wing Unmanned Aerial Vehicle (RUAV) operating in rough seas. Based on a helicopter model representing aerodynamics during the landing phase, a nonlinear state feedback H-infinity controller is designed to achieve rapid horizontal position tracking in a gusty environment. The resultant control variables are further treated in consideration of practical constraints (flapping dynamics, servo dynamics and time lag effect) for implementation purpose. The high-fidelity closed-loop simulation using parameters of the Vario helicopter verifies performance of the proposed position controller. It not only increases the disturbance attenuation capability of the RUAV, but also enables rapid position response when gusts occur. Comparative studies show that the H-infinity controller exhibits great performance improvement and can be applied to ship/RUAV landing systems.
Resumo:
This study presents a disturbance attenuation controller for horizontal position stabilisation for hover and automatic landings of a rotary-wing unmanned aerial vehicle (RUAV) operating close to the landing deck in rough seas. Based on a helicopter model representing aerodynamics during the landing phase, a non-linear state feedback H∞ controller is designed to achieve rapid horizontal position tracking in a gusty environment. Practical constraints including flapping dynamics, servo dynamics and time lag effect are considered. A high-fidelity closed-loop simulation using parameters of the Vario XLC gas-turbine helicopter verifies performance of the proposed horizontal position controller. The proposed controller not only increases the disturbance attenuation capability of the RUAV, but also enables rapid position response when gusts occur. Comparative studies show that the H∞ controller exhibits performance improvement and can be applied to ship/RUAV landing systems.
Resumo:
This paper presents an innovative and practical approach to controlling heave motion in the presence of acute stochastic atmospheric disturbances during landing operations of an Unmanned Autonomous Helicopter (UAH). A heave motion model of an UAH is constructed for the purpose of capturing dynamic variations of thrust due to horizontal wind gusts. Additionally, through construction of an effective observer to estimate magnitudes of random gusts, a promising and feasible feedback-feedforward PD controller is developed, based on available measurements from onboard equipment. The controller dynamically and synchronously compensates for aerodynamic variations of heave motion resulting from gust influence, to increase the disturbance-attenuation ability of the UAH in a windy environment. Simulation results justify the reliability and efficiency of the suggested gust observer to estimate gust levels when applied to the heave motion model of a small unmanned helicopter, and verify suitability of the recommended control strategy to realistic environmental conditions.
Resumo:
Motion control systems have a significant impact on the performance of ships and marine structures allowing them to perform tasks in severe sea states and during long periods of time. Ships are designed to operate with adequate reliability and economy, and in order to achieve this, it is essential to control the motion. For each type of ship and operation performed (transit, landing a helicopter, fishing, deploying and recovering loads, etc.), there are not only desired motion settings, but also limits on the acceptable (undesired) motion induced by the environment. The task of a ship motion control system is therefore to act on the ship so it follows the desired motion as closely as possible. This book provides an introduction to the field of ship motion control by studying the control system designs for course-keeping autopilots with rudder roll stabilisation and integrated rudder-fin roll stabilisation. These particular designs provide a good overview of the difficulties encountered by designers of ship motion control systems and, therefore, serve well as an example driven introduction to the field. The idea of combining the control design of autopilots with that of fin roll stabilisers, and the idea of using rudder induced roll motion as a sole source of roll stabilisation seems to have emerged in the late 1960s. Since that time, these control designs have been the subject of continuous and ongoing research. This ongoing interest is a consequence of the significant bearing that the control strategy has on the performance and the issues associated with control system design. The challenges of these designs lie in devising a control strategy to address the following issues: underactuation, disturbance rejection with a non minimum phase system, input and output constraints, model uncertainty, and large unmeasured stochastic disturbances. To date, the majority of the work reported in the literature has focused strongly on some of the design issues whereas the remaining issues have been addressed using ad hoc approaches. This has provided an additional motivation for revisiting these control designs and looking at the benefits of applying a contemporary design framework, which can potentially address the majority of the design issues.
Resumo:
In this paper, we consider the problem of position regulation of a class of underactuated rigid-body vehicles that operate within a gravitational field and have fully-actuated attitude. The control objective is to regulate the vehicle position to a manifold of dimension equal to the underactuation degree. We address the problem using Port-Hamiltonian theory, and reduce the associated matching PDEs to a set of algebraic equations using a kinematic identity. The resulting method for control design is constructive. The point within the manifold to which the position is regulated is determined by the action of the potential field and the geometry of the manifold. We illustrate the performance of the controller for an unmanned aerial vehicle with underactuation degree two-a quadrotor helicopter.
Resumo:
This project investigated the concept of overparenting, parenting which over uses valued parenting practices, such as protection and care for offspring. It established a clearer definition of overparenting as related to school-aged children, created a measure of overparenting, and showed that overparenting actions/beliefs to do with homework may impact on a child/adolescent's sense of responsibility for their academic achievements. Previously, most parenting research and education focussed on parenting approaches which deliver insufficient effort for children. This project showed that excessive responsiveness or assistance may also be detrimental.
Resumo:
Aerial applications of granular insecticides are preferable because they can effectively penetrate vegetation, there is less drift, and no loss of product due to evaporation. We aimed to 1) assess the field efficacy ofVectoBac G to control Aedes vigilax (Skuse) in saltmarsh pools, 2) develop a stochastic-modeling procedure to monitor application quality, and 3) assess the distribution of VectoBac G after an aerial application. Because ground-based studies with Ae. vigilax immatures found that VectoBac G provided effective control below the recommended label rate of 7 kg/ha, we trialed a nominated aerial rate of 5 kg/ha as a case study. Our distribution pattern modeling method indicated that the variability in the number of VectoBac G particles captured in catch-trays was greater than expected for 5 kg/ha and that the widely accepted contour mapping approach to visualize the deposition pattern provided spurious results and therefore was not statistically appropriate. Based on the results of distribution pattern modeling, we calculated the catch tray size required to analyze the distribution of aerially applied granular formulations. The minimum catch tray size for products with large granules was 4 m2 for Altosid pellets and 2 m2 for VectoBac G. In contrast, the minimum catch-tray size for Altosid XRG, Aquabac G, and Altosand, with smaller granule sizes, was 1 m2. Little gain in precision would be made by increasing the catch-tray size further, when the increased workload and infrastructure is considered. Our improved methods for monitoring the distribution pattern of aerially applied granular insecticides can be adapted for use by both public health and agricultural contractors.
Resumo:
"In today's story we hear from Postmans Ridge helicopter pilot, Brian Willmett, and how he and his neighbours worked together to rescue four people, including Kevin and Eileen Lees, from the inland tsunami which swept down the Lockyer Valley during last year's Queensland floods. It was a ten metre high wave that swept through Postmans Ridge that day, ripping houses from their foundations and sweeping two people to their deaths. Brian Willmett was at home when he suddenly ran to rescue neighbours who were in danger. To mark the anniversary of the floods in Queensland, ABC Open has compiled Aftermath, an extensive look at the Queensland floods as well as floods in NSW, Victoria and remote Western Australia, Cyclone Yasi and the 2009 Victorian 'Black Saturday' bushfires. Australia certainly has been hit by a few disasters in the past two or so years. The site has a timeline showing content from these six disasters, with links to about 40 people effected by these disasters. If you go to that site you will be able to choose a person to watch videos about them."
Resumo:
A high level of parental involvement is widely considered to be essential for optimal child and adolescent development and wellbeing, including academic success. However, recent consideration has been given to the idea that extremely high levels of parental involvement (often called ‘overparenting’ or ‘helicopter parenting’) might not be beneficial. This study used a newly created overparenting measure, the Locke Parenting Scale (LPS), to investigate the association of overparenting and children’s homework. Eight hundred and sixty-six parents completed online questionnaires about their parenting beliefs and intentions, and their attitudes associated with their child’s homework. Parents with higher LPS scores tended to take more personal responsibility for the completion of their child’s homework than did other parents, and ascribed greater responsibility for homework completion to their child’s teacher. However, increased perceived responsibility by parents and teachers was not accompanied by a commensurate reduction in what they perceived was the child’s responsibility. Future research should examine whether extreme parental attitudes and reported behaviours translate to validated changes in actual homework support.