32 resultados para Hipertensão Arterial
Resumo:
Arterial compliance has been shown to correlate well with overall cardiovascular outcome and it may also be a potential risk factor for the development of atheromatous disease. This study assesses the utility of 2-D phase contrast Magnetic Resonance (MR) imaging with intra-sequence blood pressure measurement to determine carotid compliance and distensibility. 20 patients underwent 2-D phase contrast MR imaging and also ultrasound-based wall tracking measurements. Values for carotid compliance and distensibility were derived from the two different modalities and compared. Linear regression analysis was utilised to determine the extent of correlation between MR and ultrasound derived parameters. In those variables that could be directly compared, an agreement analysis was undertaken. MR measures of compliance showed a good correlation with measures based on ultrasound wall-tracking (r=0.61, 95% CI 0.34 to 0.81 p=0.0003). Vessels that had undergone carotid endarterectomy previously were significantly less compliant than either diseased or normal contralateral vessels (p=0.04). Agreement studies showed a relatively poor intra-class correlation coefficient (ICC) between diameter-based measures of compliance through either MR or ultrasound (ICC=0.14). MRI based assessment of local carotid compliance appears to be both robust and technically feasible in most subjects. Measures of compliance correlate well with ultrasound-based values and correlate best when cross-sectional area change is used rather than derived diameter changes. If validated by further larger studies, 2-D phase contrast imaging with intra-sequence blood pressure monitoring and off-line radial artery tonometry may provide a useful tool in further assessment of patients with carotid atheroma.
Resumo:
How blood was able to reach the heads of the long-necked sauropod dinosaurs has long been a matter of debate and several hypotheses have been presented. For example, it has been proposed that sauropods had exceptionally large hearts, multiple ‘normal’ sized hearts spaced at regular intervals up the neck or held their necks horizontal, or that the siphon effect was in operation. By means of an experimental model, we demonstrate that the siphon principle is able to explain how blood was able to adequately perfuse the sauropod brain. The return venous circulation may have been protected from complete collapse by a structure akin to the vertebral venous plexus. We derive an equation relating neck height and mean arterial pressure, which indicates that with a mean arterial pressure similar to that of the giraffe, the maximum safe vertical distance between heart and head would have been about 12 m. A hypothesis is presented that the maximum neck length in the fossil record is due to the siphon height limit. The equation indicates that to migrate over high ground, sauropods would have had to either significantly increase their mean arterial pressure or keep their necks below a certain height dependent on altitude.