56 resultados para Hall Angle
Resumo:
Upgrading old buildings with the evolution of building requirements, this project investigates new approaches that can be applied to strengthen our own heritage buildings using historical and comparative analysis of heritage building restorations locally and abroad. Within the newly developing field of Heritage Engineering, it evaluates the innovative Concrete Overlay technique adapted to building restoration of the Brisbane City Hall. This study aims to extend the application of Concrete Overlay techniques and determine its compatibility specifically to heritage buildings. Concrete overlay involves drilling new reinforcement and placing concrete on top of the existing structure. It is akin to a bone transplant or bone grafting in the case of a human being and has been used by engineers to strengthen newer bridges.
Resumo:
This study was a step forward in modeling, simulation and microcontroller implementation of a high performance control algorithm for the motor of a blood pump. The rotor angle is sensed using three Hall effect sensors and an algorithm is developed to obtain better angular resolution from the three signals for better discrete-time updates of the controller. The performance of the system was evaluated in terms of actual and reference speeds, stator currents and power consumption over a range of reference speeds up to 4000 revolutions per minute. The use of fewer low cost Hall effect sensors compared to expensive high resolution sensors could reduce the cost of blood pumps for total artificial hearts.
Resumo:
Time- and position-resolved synchrotron small angle X-ray scattering data were acquired from samples of two Australian coal seams: Bulli seam (Bulli 4, Ro=1.42%, Sydney Basin), which naturally contains CO2 and Baralaba seam (Ro=0.67%, Bowen Basin), a potential candidate for sequestering CO2. This experimental approach has provided unique, pore-size-specific insights into the kinetics of CO2 sorption in the micro- and small mesopores (diameter 5 to 175 Å) and the density of the sorbed CO2 at reservoir-like conditions of temperature and hydrostatic pressure. For both samples, at pressures above 5 bar, the density of CO2 confined in pores was found to be uniform, with no densification in near-wall regions. In the Bulli 4 sample, CO2 first flooded the slit pores between polyaromatic sheets. In the pore-size range analysed, the confined CO2 density was close to that of the free CO2. The kinetics data are too noisy for reliable quantitative analysis, but qualitatively indicate faster kinetics in mineral-matter-rich regions. In the Baralaba sample, CO2 preferentially invaded the smallest micropores and the confined CO2 density was up to five times that of the free CO2. Faster CO2 sorption kinetics was found to be correlated with higher mineral matter content but, the mineral-matter-rich regions had lower-density CO2 confined in their pores. Remarkably, the kinetics was pore-size dependent, being faster for smaller pores. These results suggest that injection into the permeable section of an interbedded coal-clastic sequence could provide a viable combination of reasonable injectivity and high sorption capacity.
Resumo:
Solar cooling systems are gaining popularity due to continuously increasing of energy costs around the world. However, there are still some factors that are hindering the installation of solar cooling systems on a larger scale. One being the cost associated with the solar collectors required to provide heat to the absorption chiller. This study demonstrates the possibility of reducing the number of solar panels in a residential solar cooling system based on evacuated tubes producing hot water at a low temperature (90 °C) and a water-ammonia absorption chiller.
Resumo:
In this paper, we consider a passivity-based approach for the design of a control law of multiple ship-roll gyro-stabiliser units. We extend previous work on control of ship roll gyro-stabilisation by considering the problem within a nonlinear framework. In particular, we derive an energy-based model using the port-Hamiltonian theory and then design an active precession controller using passivity-based control interconnection and damping assignment. The design considers the possibility of having multiple gyro-stabiliser units, and the desired potential energy of the system (in closed loop) is chosen to behave like a barrier function, which allows us to enforce constraints on the precession angle of the gyros.
Resumo:
Brisbane City Hall (BCH) is arguably one of Brisbane’s most notable and iconic buildings. Serving as the public’s central civic and municipal building since 1930, the importance of this heritage listed building to cultural significance and identity is unquestionable. This attribute is reflected within the local government, with a simplified image of the halls main portico entrance supplying Brisbane City Council with its insignia and trademark signifier. Regardless of these qualities, this building has been neglected in a number of ways, primarily in the physical sense with built materials, but also, and just as importantly, through inaccurate and undocumented works. Numerous restoration and renovation works have been undertaken throughout BCH’s lifetime, however the records of these amendments are far and few between. Between 2010 and 2013, BCH underwent major restoration works, the largest production project undertaken on the building since its initial construction. Just prior to this conservation process, the full extent of the buildings deterioration was identified, much of which there was little to no original documentation of. This has led to a number of issues pertaining to what investigators expected to find within the building, versus what was uncovered (the unexpected), which have resulted directly from this lack of data. This absence of record keeping is the key factor that has contributed to the decay and unknown deficiencies that had amassed within BCH. Accordingly, this raises a debate about the methods of record keeping, and the need for a more advanced process that is able to be integrated within architectural and engineering programs, whilst still maintaining the ability to act as a standalone database. The immediate objective of this research is to investigate the restoration process of BCH, with focus on the auditorium, to evaluate possible strategies to record and manage data connected to building pathology so that a framework can be developed for a digital heritage management system. The framework produced for this digital tool will enable dynamic uses of a centralised database and aims to reduce the significant data loss. Following an in-depth analysis of this framework, it can be concluded that the implementation of the suggested digital tool would directly benefit BCH, and could ultimately be incorporated into a number of heritage related built form.
Resumo:
Purpose: To investigate the changes in axial length with the combined effect of accommodation and angle of gaze (convergence and downward gaze) over 5 minutes in groups of myopes and emmetropes. Methods: A total of 31 subjects (nine emmetropes, 10 low myopes, and 12 moderate to high myopes) aged from 18 to 31 years were recruited. To measure ocular biometrics in inferonasal gaze with accommodation, an optical biometer (Lenstar LS900) was inclined on a tilt and height adjustable stage, with the subject’s chinrest mounted on a rotary stage to induce various levels of convergence by rotation of the subject’s head in primary or downward gaze. Initially, the subjects performed a distance viewing task in primary gaze for 10 minutes to provide a ‘wash-out’ period for prior visual tasks, and then the subject’s axial length and ocular biometrics were measured in nine different combinations of gaze/accommodation over 5 minutes. These nine sessions for all gaze measurements (i.e. three levels of accommodation 9 three levels of convergence) were completed across 3 days of testing (one accommodation condition on each day).The nine combinations of gaze/accommodation were based on those required to view the centre, right and left edges of a distant TV at 6 m in primary gaze, an intermediate task (i.e. computer at 50 cm in 10° downward gaze) and a near task (i.e. reading A4 page at 20 cm in 20° downward gaze). Subjects were wearing a custom built three-axes head tracker throughout the experiment that monitored subjects’ relative head movements (roll, pitch and yaw) during measurements. Results: A significant increase in axial length occurred with the combined effect of accommodation, convergence and downward gaze (repeated measures ANOVA, p < 0.001), with the greatest axial elongation during the near task in downward gaze with convergence (i.e. downward 20°/inward 33°, with 5 D accommodation) (mean change 33 ± 13 lm, after 5 minutes task) followed by the intermediate task (i.e. downward 10°/inward 25°, with 2 D accommodation) (mean change 14 ± 11 lm, after 5 minutes task).Changes in axial length for the distance task (i.e. primary gaze/9° convergence, with 0.16 D accommodation) were not statistically significant (mean change 4 ± 8 lm, after 5 minutes task, p > 0.05). Moderate to high myopes had a greater change in the axial length (mean change 40 ± 11 lm after 5 minutes of near task) than that of emmetropes (mean change 29 ± 15 lm after 5 minutes of near task) and low myopes (mean change 29 ± 16 lm after 5 minutes of near task) associated with time (p = 0.02) and accommodation by time (p = 0.03). Conclusions: The combination of accommodation, convergence and downward angle has a significant short term effect on axial length over time. The near task in downward gaze with convergence caused a greater change in axial length than the intermediate and distant visual tasks. The greater axial elongation measured in the infero-nasal direction with accommodation is most likely associated with a combination of biomechanical factors such as, extraocular muscle forces and ciliary muscle contraction.
Resumo:
Introduction Standing radiographs are the ‘gold standard’ for clinical assessment of adolescent idiopathic scoliosis (AIS), with the Cobb Angle used to measure the severity and progression of the scoliotic curve. Supine imaging modalities can provide valuable 3D information on scoliotic anatomy, however, due to changes in gravitational loading direction, the geometry of the spine alters between the supine and standing position which in turn affects the Cobb Angle measurement. Previous studies have consistently reported a 7-10° [1-3] Cobb Angle increase from supine to standing, however, none have reported the effect of endplate pre-selection and which (if any) curve parameters affect the supine to standing Cobb Angle difference. Methods Female AIS patients with right-sided thoracic major curves were included in the retrospective study. Clinically measured Cobb Angles from existing standing coronal radiographs and fulcrum bending radiographs [4] were compared to existing low-dose supine CT scans taken within 3 months of the reference radiograph. Reformatted coronal CT images were used to measure Cobb Angle variability with and without endplate pre-selection (end-plates selected on the radiographs used on the CT images). Inter and intra-observer measurement variability was assessed. Multi-linear regression was used to investigate whether there was a relationship between supine to standing Cobb Angle change and patient characteristics (SPSS, v.21, IBM, USA). Results Fifty-two patients were included, with mean age of 14.6 (SD 1.8) years; all curves were Lenke Type 1 with mean Cobb Angle on supine CT of 42° (SD 6.4°) and 52° (SD 6.7°) on standing radiographs. The mean fulcrum bending Cobb Angle for the group was 22.6° (SD 7.5°). The 10° increase from supine to standing is consistent with existing literature. Pre-selecting vertebral endplates was found to increase the Cobb Angle difference by a mean 2° (range 0-9°). Multi-linear regression revealed a statistically significant relationship between supine to standing Cobb Angle change with: fulcrum flexibility (p=0.001), age (p=0.027) and standing Cobb Angle (p<0.001). In patients with high fulcrum flexibility scores, the supine to standing Cobb Angle change was as great as 20°.The 95% confidence intervals for intra-observer and inter-observer measurement variability were 3.1° and 3.6°, respectively. Conclusion There is a statistically significant relationship between supine to standing Cobb Angle change and fulcrum flexibility. Therefore, this difference can be considered a measure of spinal flexibility. Pre-selecting vertebral endplates causes only minor changes.
Resumo:
While the half-angle which encloses a Kelvin ship wave pattern is commonly accepted to be 19.47 degrees, recent observations and calculations for sufficiently fast-moving ships suggest that the apparent wake angle decreases with ship speed. One explanation for this decrease in angle relies on the assumption that a ship cannot generate wavelengths much greater than its hull length. An alternative interpretation is that the wave pattern that is observed in practice is defined by the location of the highest peaks; for wakes created by sufficiently fast-moving objects, these highest peaks no longer lie on the outermost divergent waves, resulting in a smaller apparent angle. In this paper, we focus on the problems of free surface flow past a single submerged point source and past a submerged source doublet. In the linear version of these problems, we measure the apparent wake angle formed by the highest peaks, and observe the following three regimes: a small Froude number pattern, in which the divergent waves are not visible; standard wave patterns for which the maximum peaks occur on the outermost divergent waves; and a third regime in which the highest peaks form a V-shape with an angle much less than the Kelvin angle. For nonlinear flows, we demonstrate that nonlinearity has the effect of increasing the apparent wake angle so that some highly nonlinear solutions have apparent wake angles that are greater than Kelvin's angle. For large Froude numbers, the effect on apparent wake angle can be more dramatic, with the possibility of strong nonlinearity shifting the wave pattern from the third regime to the second. We expect our nonlinear results will translate to other more complicated flow configurations, such as flow due to a steadily moving closed body such as a submarine.
Resumo:
A field oriented control (FOC) algorithm is simulated and implemented for use with a permanent magnet synchronous motor (PMSM). Rotor position is sensed using Hall effect switches on the stator because other hardware position sensors attached to the rotor may not be desirable or cost effective for certain applications. This places a limit on the resolution of position sensing – only a few Hall effect switches can be placed. In this simulation, three sensors are used and the position information is obtained at higher resolution by estimating it from the rotor dynamics, as shown in literature previously. This study compares the performance of the method with an incremental encoder using simulations. The FOC algorithm is implemented using Digital Motor Control (DMC) and IQ Texas Instruments libraries from a Simulink toolbox called Embedded Coder, and downloaded into a TI microcontroller (TMS320F28335) known as the Piccolo via Code Composer Studio (CCS).
Resumo:
Background Supine imaging modalities provide valuable 3D information on scoliotic anatomy, but the altered spine geometry between the supine and standing positions affects the Cobb angle measurement. Previous studies report a mean 7°-10° Cobb angle increase from supine to standing, but none have reported the effect of endplate pre-selection or whether other parameters affect this Cobb angle difference. Methods Cobb angles from existing coronal radiographs were compared to those on existing low-dose CT scans taken within three months of the reference radiograph for a group of females with adolescent idiopathic scoliosis. Reformatted coronal CT images were used to measure supine Cobb angles with and without endplate pre-selection (end-plates selected from the radiographs) by two observers on three separate occasions. Inter and intra-observer measurement variability were assessed. Multi-linear regression was used to investigate whether there was a relationship between supine to standing Cobb angle change and eight variables: patient age, mass, standing Cobb angle, Risser sign, ligament laxity, Lenke type, fulcrum flexibility and time delay between radiograph and CT scan. Results Fifty-two patients with right thoracic Lenke Type 1 curves and mean age 14.6 years (SD 1.8) were included. The mean Cobb angle on standing radiographs was 51.9° (SD 6.7). The mean Cobb angle on supine CT images without pre-selection of endplates was 41.1° (SD 6.4). The mean Cobb angle on supine CT images with endplate pre-selection was 40.5° (SD 6.6). Pre-selecting vertebral endplates increased the mean Cobb change by 0.6° (SD 2.3, range −9° to 6°). When free to do so, observers chose different levels for the end vertebrae in 39% of cases. Multi-linear regression revealed a statistically significant relationship between supine to standing Cobb change and fulcrum flexibility (p = 0.001), age (p = 0.027) and standing Cobb angle (p < 0.001). The 95% confidence intervals for intra-observer and inter-observer measurement variability were 3.1° and 3.6°, respectively. Conclusions Pre-selecting vertebral endplates causes minor changes to the mean supine to standing Cobb change. There is a statistically significant relationship between supine to standing Cobb change and fulcrum flexibility such that this difference can be considered a potential alternative measure of spinal flexibility.
Resumo:
The primary aim of this study was to determine whether endplate pre-selection makes a difference to the Cobb Angle change between supine and standing which is known to occur in idiopathic scoliosis. A secondary aim of this study was to identify which (if any) patient characteristics were correlated with supine versus standing Cobb change. The study found that pre-selecting vertebral endplates causes only has a minor effect on supine to standing Cobb change in scoliosis. There is a statistically significant relationship between supine to standing Cobb Angle change and fulcrum flexibility. Therefore, supine to standing Cobb Angle change can be considered as a measure of spinal flexibility when both standing and supine images are clinically available.