124 resultados para HEAD AND NECK CANCER
Resumo:
Head and neck cancers (HNCs) represent a significant and ever-growing burden to the modern society, mainly due to the lack of early diagnostic methods. A significant number of HNCs is often associated with drinking, smoking, chewing beetle nut, and human papilloma virus (HPV) infections. We have analyzed DNA methylation patterns in tumor and normal tissue samples collected from head and neck squamous cell carcinoma (HNSCC) patients who were smokers. We have identified novel methylation sites in the promoter of the mediator complex subunit 15 (MED15/PCQAP) gene (encoing a co-factor important for regulation of transcription initiation for promoters of many genes), hypermethylated specifically in tumor cells. Two clusters of CpG dinucleotides methylated in tumors, but not in normal tissue from the same patients, were identified. These CpG methylation events in saliva samples were further validated in a separate cohort of HNSCC patients (who developed cancer due to smoking or HPV infections) and healthy controls using methylation-specific PCR (MSP). We used saliva as a biological medium because of its non-invasive nature, close proximity to the tumors, easiness and it is an economically viable option for large-scale screening studies. The methylation levels for the two identified CpG clusters were significantly different between the saliva samples collected from healthy controls and HNSCC individuals (Welch's t-test returning P, 0.05 and Mann-Whitney test P, 0.01 for both). The developed MSP assays also provided a good discriminative ability with AUC values of 0.70 (P, 0.01) and 0.63 (P, 0.05). The identified novel CpG methylation sites may serve as potential non-invasive biomarkers for detecting HNSCC. © the authors.
Resumo:
Background MicroRNAs (miRNAs) are known to play an important role in cancer development by post-transcriptionally affecting the expression of critical genes. The aims of this study were two-fold: (i) to develop a robust method to isolate miRNAs from small volumes of saliva and (ii) to develop a panel of saliva-based diagnostic biomarkers for the detection of head and neck squamous cell carcinoma (HNSCC). Methods Five differentially expressed miRNAs were selected from miScript™ miRNA microarray data generated using saliva from five HNSCC patients and five healthy controls. Their differential expression was subsequently confirmed by RT-qPCR using saliva samples from healthy controls (n = 56) and HNSCC patients (n = 56). These samples were divided into two different cohorts, i.e., a first confirmatory cohort (n = 21) and a second independent validation cohort (n = 35), to narrow down the miRNA diagnostic panel to three miRNAs: miR-9, miR-134 and miR-191. This diagnostic panel was independently validated using HNSCC miRNA expression data from The Cancer Genome Atlas (TCGA), encompassing 334 tumours and 39 adjacent normal tissues. Receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic capacity of the panel. Results On average 60 ng/μL miRNA was isolated from 200 μL of saliva. Overall a good correlation was observed between the microarray data and the RT-qPCR data. We found that miR-9 (P <0.0001), miR-134 (P <0.0001) and miR-191 (P <0.001) were differentially expressed between saliva from HNSCC patients and healthy controls, and that these miRNAs provided a good discriminative capacity with area under the curve (AUC) values of 0.85 (P <0.0001), 0.74 (P < 0.001) and 0.98 (P < 0.0001), respectively. In addition, we found that the salivary miRNA data showed a good correlation with the TCGA miRNA data, thereby providing an independent validation. Conclusions We show that we have developed a reliable method to isolate miRNAs from small volumes of saliva, and that the saliva-derived miRNAs miR-9, miR-134 and miR-191 may serve as novel biomarkers to reliably detect HNSCC. © 2014 International Society for Cellular Oncology.
Resumo:
Cancer rates have been increasing over the past 26 years, but earlier detection and increasingly more treatment options also mean more and more people are surviving cancer.
Resumo:
Human papilloma virus (HPV) infection is a major risk factor for a distinct subset of head and neck squamous cell carcinoma (HNSCC). The current review summarizes the epidemiology of HNSCC and the disease burden, the infectious cycle of HPV, the roles of viral oncoproteins, E6 and E7, and the downstream cellular events that lead to malignant transformation. Current techniques for the clinical diagnosis of HPV-associated HNSCC will also be discussed, that is, the detection of HPV DNA, RNA, and the HPV surrogate marker, p16 in tumor tissues, as well as HPV-specific antibodies in serum. Such methods do not allow for the early detection of HPV-associated HNSCC and most cases are at an advanced stage upon diagnosis. Novel noninvasive approaches using oral fluid, a clinically relevant biological fluid, allow for the detection of HPV and cellular alterations in infected cells, which may aid in the early detection and HPV-typing of HNSCC tumors. Noninvasive diagnostic methods will enable early detection and intervention, leading to a significant reduction in mortality and morbidity associated with HNSCC.
Resumo:
Purpose: It is common for head and neck patients to be affected by time trend errors as a result of weight loss during a course of radiation treatment. The objective of this planning study was to investigate the impact of weight loss on Volumetric Modulated Arc Therapy (VMAT) as well as Intensity modulated radiation therapy (IMRT) for locally advanced head and neck cancer using automatic co-registration of the CBCT. Methods and Materials: A retrospective analysis of previously treated IMRT plans for 10 patients with locally advanced head and neck cancer patients was done. A VMAT plan was also produced for all patients. We calculated the dose–volume histograms (DVH) indices for spinal cord planning at risk volumes (PRVs), the brainstem PRVs (SC+0.5cm and BS+0.5cm, respectively) as well as mean dose to the parotid glands. Results: The results show that the mean difference in dose to the SC+0.5cm was 1.03% and 1.27% for the IMRT and VMAT plans, respectively. As for dose to the BS+0.5, the percentage difference was 0.63% for the IMRT plans and 0.61% for the VMAT plans. The analysis of the parotid gland doses shows that the percentage change in mean dose to left parotid was -8.0% whereas that of the right parotid was -6.4% for the IMRT treatment plans. In the VMAT plans, the percentages change for the left and the right parotid glands were -6.6% and -6.7% respectively. Conclusions: This study shows a clinically significant impact of weight loss on DVH indices analysed in head and neck organs at risk. It highlights the importance of adaptive radiotherapy in head and neck patients if organ at risk sparing is to be maintained.
Resumo:
This study used a homogeneous water-equivalent model of an electronic portal imaging device (EPID), contoured as a structure in a radiotherapy treatment plan, to produce reference dose images for comparison with in vivo EPID dosimetry images. Head and neck treatments were chosen as the focus of this study, due to the heterogeneous anatomies involved and the consequent difficulty of rapidly obtaining reliable reference dose images by other means. A phantom approximating the size and heterogeneity of a typical neck, with a maximum radiological thickness of 8.5 cm, was constructed for use in this study. This phantom was CT scanned and a simple treatment including five square test fields and one off-axis IMRT field was planned. In order to allow the treatment planning system to calculate dose in a model EPID positioned a distance downstream from the phantom to achieve a source-to-detector distance (SDD) of 150 cm, the CT images were padded with air and the phantom’s “body” contour was extended to encompass the EPID contour. Comparison of dose images obtained from treatment planning calculations and experimental irradiations showed good agreement, with more than 90% of points in all fields passing a gamma evaluation, at γ (3%, 3mm )Similar agreement was achieved when the phantom was over-written with air in the treatment plan and removed from the experimental beam, suggesting that water EPID model at 150 cm SDD is capable of providing accurate reference images for comparison with clinical IMRT treatment images, for patient anatomies with radiological thicknesses ranging from 0 up to approximately 9 cm. This methodology therefore has the potential to be used for in vivo dosimetry during treatments to tissues in the neck as well as the oral and nasal cavities, in the head-and-neck region.
Prevalence and incidence of shoulder and neck dysfunction after neck dissection: A systematic review
Resumo:
Background: Head and neck cancer is a debilitating disease. Not only can the primary tumour cause painful swallowing and speech difficulties, the treatments required to manage it can impact on neck and shoulder musculoskeletal function. In particular, those patients who undergo neck dissection surgery to remove lymph nodes from the neck can acquire accessory nerve injury during the procedure and a resultant loss of shoulder/neck motion, strength and function. Despite changes to surgical techniques that can protect the nerve, patients still report problems post-operatively.
Resumo:
The 'histone code' is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as histone acetyltransferases or HATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The proinflammatory environment is increasingly being recognised as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential & current development of histone deacetylases for the treatment of diseases for which a proinflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the proinflammatory environment. © 2009 Bentham Science Publishers Ltd.
Resumo:
Purpose: To identify a 15-KDa novel hypoxia-induced secreted protein in head and neck squamous cell carcinomas (HNSCC) and to determine its role in malignant progression. Methods: We used surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) and tandem MS to identify a novel hypoxia-induced secreted protein in FaDu cells. We used immunoblots, real-time polymerase chain reaction (PCR), and enzyme-linked immunoabsorbent assay to confirm the hypoxic induction of this secreted protein as galectin-1 in cell lines and xenografts. We stained tumor tissues from 101 HNSCC patients for galectin-1, CA IX (carbonic anhydrase IX, a hypoxia marker) and CDS (a T-cell marker). Expression of these markers was correlated to each other and to treatment outcomes. Results: SELDI-TOF studies yielded a hypoxia-induced peak at 15 kDa that proved to be galectin-1 by MS analysis. Immunoblots and PCR studies confirmed increased galectin-1 expression by hypoxia in several cancer cell lines. Plasma levels of galectin-1 were higher in tumor-bearing severe combined immunodeficiency (SCID) mice breathing 10% O 2 compared with mice breathing room air. In HNSCC patients, there was a significant correlation between galectin-1 and CA IX staining (P = .01) and a strong inverse correlation between galectin-1 and CDS staining (P = .01). Expression of galectin-1 and CDS were significant predictors for overall survival on multivariate analysis. Conclusion: Galectin-1 is a novel hypoxia-regulated protein and a prognostic marker in HNSCC. This study presents a new mechanism on how hypoxia can affect the malignant progression and therapeutic response of solid tumors by regulating the secretion of proteins that modulate immune privilege. © 2005 by American Society of Clinical Oncology.
Resumo:
Despite positive results in large scale chemoprevention trials, many physicians are unaware of the potential cancer preventive properties of drugs in common usage. The antioestrogen tamoxifen and the selective cyclo-oxygenase-2 inhibitor celecoxib have been licensed in the USA for the chemoprevention of breast and colorectal cancers respectively in selected high risk individuals. Similarly, folate and retinol have been shown to decrease the incidence of colorectal cancer and squamous cell carcinoma of the skin respectively in large scale intervention trials. Other retinoids have proved efficacious in the tertiary chemoprevention of cancers of the breast and head/neck. Epidemiological evidence also exists in favour of aspirin, nonsteroidal anti-inflammatory drugs, and angiotensin converting enzyme inhibitors preventing certain cancers. Phytochemicals may represent less toxic alternatives to these agents. Although some of these drugs are available without prescription and most are not yet licensed for use in cancer chemoprevention, physicians and students of medicine should be aware of this accumulating evidence base. Practitioners should be amenable to patient referral to discuss complex issues such as risk estimation or potential benefit from intervention.
Resumo:
Although cytosolic glutathione S-transferase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes, GSTT1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GSTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals, e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestive tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.
Resumo:
Inherited genetic traits co-determine the susceptibility of an individual to a toxic chemical. Special emphasis has been put on individual responses to environmental and industrial carcinogens, but other chronic diseases are of increasing interest. Polymorphisms of relevant xenobiotic metabolising enzymes may be used as toxicological susceptibility markers. A growing number of genes encoding enzymes involved in biotransformation of toxicants and in cellular defence against toxicant-induced damage to the cells has been identified and cloned, leading to increased knowledge of allelic variants of genes and genetic defects that may result in a differential susceptibility toward environmental toxicants. "Low penetrating" polymorphisms in metabolism genes tend to be much more common in the population than allelic variants of "high penetrating" cancer genes, and are therefore of considerable importance from a public health point of view. Positive associations between cancer and CYP1A1 alleles, in particular the *2C I462V allele, were found for tissues following the aerodigestive tract. Again, in most cases, the effect of the variant CYP1A1 allele becomes apparent or clearer in connection with the GSTM1 null allele. The CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squameous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has also pointed to interactive effects. Of particular interest for the industrial and environmental field is the isozyme CYP2E1. Several genotypes of this isozyme have been characterised which seem to be associated with different levels of expression of enzyme activity. The acetylator status for NAT2 can be determined by genotyping or by phenotyping. In the pathogenesis of human bladder cancer due to occupational exposure to "classical" aromatic amines (benzidine, 4-aminodiphenyl, 1-naphthylamine) acetylation by NAT2 is regarded as a detoxication step. Interestingly, the underlying European findings of a higher susceptibility of slow acetylators towards aromatic amines are in contrast to findings in Chinese workers occupationally exposed to aromatic amines which points to different mechanisms of susceptibility between European and Chinese populations. Regarding human bladder cancer, the hypothesis has been put forward that genetic polymorphism of GSTM1 might be linked with the occurrence of this tumour type. This supports the hypothesis that exposure to PAH might causally be involved in urothelial cancers. The human polymorphic GST catalysing conjugation of halomethanes, dihalomethanes, ethylene oxide and a number of other industrial compounds could be characterised as a class theta enzyme (GSTT1) by means of molecular biology. "Conjugator" and "non-conjugator" phenotypes are coincident with the presence and absence of the GSTT1 gene. There are wide variations in the frequencies of GSTT1 deletion (GSTT1 *0/0) among different ethnicities. Human phenotyping is facilitated by the GST activity towards methyl bromide or ethylene oxide in erythrocytes which is representative of the metabolic GSTT1 competence of the entire organism. Inter-individual variations in xenobiotic metabolism capacities may be due to polymorphisms of the genes coding for the enzymes themselves or of the genes coding for the receptors or transcription factors which regulate the expression of the enzymes. Also, polymorphisms in several regions of genes may cause altered ligand affinity, transactivation activity or expression levels of the receptor subsequently influencing the expression of the downstream target genes. Studies of individual susceptibility to toxicants and gene-environment interaction are now emerging as an important component of molecular epidemiology.
Resumo:
The growing knowledge of the genetic polymorphisms of enzymes metabolising xenobiotics in humans and their connections with individual susceptibility towards toxicants has created new and important interfaces between human epidemiology and experimental toxicology. The results of molecular epidemiological studies may provide new hypotheses and concepts, which call for experimental verification, and experimental concepts may obtain further proof by molecular epidemiological studies. If applied diligently, these possibilities may be combined to lead to new strategies of human-oriented toxicological research. This overview will present some outstanding examples for such strategies taken from the practically very important field of occupational toxicology. The main focus is placed on the effects of enzyme polymorphisms of the xenobiotic metabolism in association with the induction of bladder cancer and renal cell cancer after exposure to occupational chemicals. Also, smoking and induction of head and neck squamous cell cancer are considered.