322 resultados para Gray, Ellen.
Resumo:
The researcher’s professional role as an Education Officer was the impetus for this study. Designing and implementing professional development activities is a significant component of the researcher’s position description and as a result of reflection and feedback from participants and colleagues, the creation of a more effective model of professional development became the focus for this study. Few studies have examined all three links between the purposes of professional development that is, increasing teacher knowledge, improving teacher practice, and improving student outcomes. This study is significant in that it investigates the nature of the growth of teachers who participated in a model of professional development which was based upon the principles of Lesson Study. The research provides qualitative and empirical data to establish some links between teacher knowledge, teacher practice, and student learning outcomes. Teacher knowledge in this study refers to mathematics content knowledge as well as pedagogical-content knowledge. The outcomes for students include achievement outcomes, attitudinal outcomes, and behavioural outcomes. As the study was conducted at one school-site, existence proof research was the focus of the methodology and data collection. Developing over the 2007 school year, with five teacher-participants and approximately 160 students from Year Levels 6 to 9, the Lesson Study-principled model of professional development provided the teacher-participants with on-site, on-going, and reflective learning based on their classroom environment. The focus area for the professional development was strategising the engagement with and solution of worded mathematics problems. A design experiment was used to develop the professional development as an intervention of prevailing teacher practice for which data were collected prior to and after the period of intervention. A model of teacher change was developed as an underpinning framework for the development of the study, and was useful in making decisions about data collection and analyses. Data sources consisted of questionnaires, pre-tests and post-tests, interviews, and researcher observations and field notes. The data clearly showed that: content knowledge and pedagogical-content knowledge were increased among the teacher-participants; teacher practice changed in a positive manner; and that a majority of students demonstrated improved learning outcomes. The positive changes to teacher practice are described in this study as the demonstrated use of mixed pedagogical practices rather than a polarisation to either traditional pedagogical practices or contemporary pedagogical practices. The improvement in student learning outcomes was most significant as improved achievement outcomes as indicated by the comparison of pre-test and post-test scores. The effectiveness of the Lesson Study-principled model of professional development used in this study was evaluated using Guskey’s (2005) Five Levels of Professional Development Evaluation.
Resumo:
The purpose of this proof-of-concept study was to determine the relevance of direct measurements to monitor the load applied on the osseointegrated fixation of transfemoral amputees during static load bearing exercises. The objectives were (A) to introduce an apparatus using a three-dimensional load transducer, (B) to present a range of derived information relevant to clinicians, (C) to report on the outcomes of a pilot study and (D) to compare the measurements from the transducer with those from the current method using a weighing scale. One transfemoral amputee fitted with an osseointegrated implant was asked to apply 10 kg, 20 kg, 40 kg and 80 kg on the fixation, using self-monitoring with the weighing scale. The loading was directly measured with a portable kinetic system including a six-channel transducer, external interface circuitry and a laptop. As the load prescribed increased from 10 kg to 80 kg, the forces and moments applied on and around the antero-posterior axis increased by 4 fold anteriorly and 14 fold medially, respectively. The forces and moments applied on and around the medio-lateral axis increased by 9 fold laterally and 16 fold from anterior to posterior, respectively. The long axis of the fixation was overloaded and underloaded in 17 % and 83 % of the trials, respectively, by up to ±10 %. This proof-of-concept study presents an apparatus that can be used by clinicians facing the challenge of improving basic knowledge on osseointegration, for the design of equipment for load bearing exercises and for rehabilitation programs.
Resumo:
An extensive literature examines the dynamics of interest rates, with particular attention given to the positive relationship between interest-rate volatility and the level of interest rates—the so-called level effect. This paper examines the interaction between the estimated level effect and competing parameterisations of interest-rate volatility for the Australian yield curve. We adopt a new methodology that estimates elasticity in a multivariate setting that explicitly accommodates the correlations that exist between various yield factors. Results show that significant correlations exist between the residuals of yield factors and that such correlations do indeed impact on model estimates. Within the multivariate setting, the level of the short rate is shown to be a crucial determinant of the conditional volatility of all three yield factors. Measures of model fit suggest that, in addition to the usual level effect, the incorporation of GARCH effects and possible regime shifts is important
Resumo:
This paper examines ‘What Have We Learned From Current Affairs This Week?’: a very successful weekly segment from the ABC program The Chaser’s War on Everything. It argues that through its intertextual satire, this regular segment acts not as a traditional news program would in presenting news updates on current events, but as a text which reflects on the way news is reported and how this, in turn, may shape public discourse. While the program has been highly controversial (enduring many a loud call for it to be pulled from air), this form of light entertainment can play an important public service by encouraging citizens to ‘read through’ (Gray, 2006: 104) commercial current affairs’ façade of ‘quality’ journalism.
Resumo:
Computer systems have become commonplace in most SMEs and technology is increasingly becoming a part of doing business. In recent years, the Internet has become readily available to businesses; consequently there has been growing pressure on SMEs to take up e-commerce. However, e-commerce is perceived by many as being unproven in terms of business benefit. This research aims to determine what, if any, benefits are derived from assimilating e-commerce technologies into SME business processes. This paper presents three in-depth case studies from the Real Estate industry in a regional setting. Overall, findings were positive and identified the following experiences: enhanced business efficiencies, cost benefits, improved customer interactions and increased business return on investment.
Resumo:
The professional doctorate is a degree that is specifically designed for professionals investigating real-world problems and relevant issues for a profession, industry and/or the community. The exploratory study on which this paper is based sought to track the scholarly skill development of a cohort of professional doctoral students who commenced their course in January 2008 at an Australian university. Via an initial survey and two focus groups held six months apart, the study aimed to determine if there had been any qualitative shifts in students’ understandings, expectations and perceptions regarding their developing knowledge and skills. Three key findings that emerged from this study were: (i) the appropriateness of using a blended learning approach in this professional doctoral program; (ii) the challenges of using wikis as an online technology for creating communities of practice; and (iii) the transition from professional to scholar is a process that requires the guided support inherent in the design of this particular doctorate of education program.
Resumo:
Intelligent surveillance systems typically use a single visual spectrum modality for their input. These systems work well in controlled conditions, but often fail when lighting is poor, or environmental effects such as shadows, dust or smoke are present. Thermal spectrum imagery is not as susceptible to environmental effects, however thermal imaging sensors are more sensitive to noise and they are only gray scale, making distinguishing between objects difficult. Several approaches to combining the visual and thermal modalities have been proposed, however they are limited by assuming that both modalities are perfuming equally well. When one modality fails, existing approaches are unable to detect the drop in performance and disregard the under performing modality. In this paper, a novel middle fusion approach for combining visual and thermal spectrum images for object tracking is proposed. Motion and object detection is performed on each modality and the object detection results for each modality are fused base on the current performance of each modality. Modality performance is determined by comparing the number of objects tracked by the system with the number detected by each mode, with a small allowance made for objects entering and exiting the scene. The tracking performance of the proposed fusion scheme is compared with performance of the visual and thermal modes individually, and a baseline middle fusion scheme. Improvement in tracking performance using the proposed fusion approach is demonstrated. The proposed approach is also shown to be able to detect the failure of an individual modality and disregard its results, ensuring performance is not degraded in such situations.
Resumo:
The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.
Resumo:
Serotonergic hypofunction is associated with a depressive mood state, an increased drive to eat and preference for sweet (SW) foods. High-trait anxiety individuals are characterised by a functional shortage of serotonin during stress, which in turn increases their susceptibility to experience a negative mood and an increased drive for SW foods. The present study examined whether an acute dietary manipulation, intended to increase circulating serotonin levels, alleviated the detrimental effects of a stress-inducing task on subjective appetite and mood sensations, and preference for SW foods in high-trait anxiety individuals. Thirteen high- (eleven females and two males; anxiety scores 45·5 (sd 5·9); BMI 22·9 (sd 3·0)kg/m2) and twelve low- (ten females and two males; anxiety scores 30·4 (sd 4·8); BMI 23·4 (sd 2·5) kg/m2) trait anxiety individuals participated in a placebo-controlled, two-way crossover design. Participants were provided with 40 g α-lactalbumin (LAC; l-tryptophan (Trp):large neutral amino acids (LNAA) ratio of 7·6) and 40 g casein (placebo) (Trp:LNAA ratio of 4·0) in the form of a snack and lunch on two test days. On both the test days, participants completed a stress-inducing task 2 h after the lunch. Mood and appetite were assessed using visual analogue scales. Changes in food hedonics for different taste and nutrient combinations were assessed using a computer task. The results demonstrated that the LAC manipulation did not exert any immediate effects on mood or appetite. However, LAC did have an effect on food hedonics in individuals with high-trait anxiety after acute stress. These individuals expressed a lower liking (P = 0·012) and SW food preference (P = 0·014) after the stressful task when supplemented with LAC.
Resumo:
Staphylococcus aureus is a common pathogen that causes a variety of infections including soft tissue infections, impetigo, septicemia toxic shock and scalded skin syndrome. Traditionally, Methicillin-Resistant Staphylococcus aureus (MRSA) was considered a Hospital-Acquired (HA) infection. It is now recognised that the frequency of infections with MRSA is increasing in the community, and that these infections are not originating from hospital environments. A 2007 report by the Centers for Disease Control and Prevention (CDC) stated that Staphylococcus aureus is the most important cause of serious and fatal infections in the USA. Community-Acquired MRSA (CA-MRSA) are genetically diverse and distinct, meaning they are able to be identified and tracked by way of genotyping. Genotyping of MRSA using Single nucleotide polymorphisms (SNPs) is a rapid and robust method for monitoring MRSA, specifically ST93 (Queensland Clone) dissemination in the community. It has been shown that a large proportion of CA-MRSA infections in Queensland and New South Wales are caused by ST93. The rationale for this project was that SNP analysis of MLST genes is a rapid and cost-effective method for genotyping and monitoring MRSA dissemination in the community. In this study, 16 different sequence types (ST) were identified with 41% of isolates identified as ST93 making it the predominate clone. Males and Females were infected equally with an average patient age of 45yrs. Phenotypically, all of the ST93 had an identical antimicrobial resistance pattern. They were resistant to the β-lactams – Penicillin, Flu(di)cloxacillin and Cephalothin but sensitive to all other antibiotics tested. Virulence factors play an important role in allowing S. aureus to cause disease by way of colonising, replication and damage to the host. One virulence factor of particular interest is the toxin Panton-Valentine leukocidin (PVL), which is composed of two separate proteins encoded by two adjacent genes. PVL positive CA-MRSA are shown to cause recurrent, chronic or severe skin and soft tissue infections. As a result, it is important that PVL positive CA-MRSA is genotyped and tracked. Especially now that CA-MRSA infections are more prevalent than HA-MRSA infections and are now deemed endemic in Australia. 98% of all isolates in this study tested positive for the PVL toxin gene. This study showed that PVL is present in many different community based ST, not just ST93, which were all PVL positive. With this toxin becoming entrenched in CA-MRSA, genotyping would provide more accurate data and a way of tracking the dissemination. PVL gene can be sub-typed using an allele-specific Real-Time PCR (RT-PCR) followed by High resolution meltanalysis. This allows the identification of PVL subtypes within the CA-MRSA population and allow the tracking of these clones in the community.
Resumo:
A recent decision by the Australian High Court means that, unless faculty are bound by an assignment or intellectual property (IP) policy, they may own inventions resulting from their research. Thirty years after its introduction, the US Bayh-Dole Act, which vests ownership of employee inventions in the employer university or research organization, has become a model for commercialization around the world. In Australia, despite recommendations that a Bayh-Dole style regime be adopted, the recent decision in University of Western Australia (UWA) v Gray1 has moved the default legal position in a diametrically opposite direction. A key focus of the debate was whether faculty’s duty to carry out research also encompasses a duty to invent. Late last year, the Full Federal Court confirmed a lower court ruling that it does not, and this year the High Court refused leave to appeal (denied certiorari). Thus, Gray stands as Australia’s most faculty-friendly authority to date.