40 resultados para Grain crushing, rotation stuctures
Resumo:
Use of appropriate nursery environments will maximize gain from selection for yield of wheat (Triticum aestivum L.) in the target population of environments of a breeding program. The objective of this study was to investigate how well-irrigated (low-stress) nursery environments predict yield of lines in target environments that varied in degree of water limitation. Fifteen lines were sampled from the preliminary yield evaluation stage of the Queensland wheat breeding program and tested in 26 trials under on-farm conditions (Target Environments) across nine years (1985 to 1993) and also in 27 trials conducted at three research stations (Nursery Environments) in three years (1987 to 1989). The nursery environments were structured to impose different levels of water and nitrogen (N) limitation, whereas the target environments represented a random sample of on-farm conditions from the target population of environments. Indirect selection and pattern analysis methods were used to investigate selection for yield in the nursery environments and gain from selection in the target environments. Yield under low-stress nursery conditions was an effective predictor of yield under similar low-stress target environments (r = 0.89, P < 0.01). However, the value of the low-stress nursery as a predictor of yield in the water-limited target environments decreased with increasing water stress (moderate stress r = 0.53, P < 0.05, to r = 0.38, P > 0.05; severe stress r = -0.08, P > 0.05). Yield in the stress nurseries was a poor predictor of yield in the target environments. Until there is a clear understanding of the physiological-genetic basis of variation for adaptation of wheat to the water-limited environments in Queensland, yield improvement can best be achieved by selection for a combination of yield potential in an irrigated low-stress nursery and yield in on-farm trials that sample the range of water-limited environments of the target population of environments.
Resumo:
Computational fluid dynamics, analytical solutions, and mathematical modelling approaches are used to gain insights into the distribution of fumigant gas within farm-scale, grain storage silos. Both fan-forced and tablet fumigation are considered in this work, which develops new models for use by researchers, primary producers and silo manufacturers to assist in the eradication grain storage pests.
Resumo:
Graphene/hexagonal boron nitride (G/h-BN) heterostructure has attracted tremendous research efforts owing to its great potential for applications in nano-scale electronic devices. In such hybrid materials, tilt grain boundaries (GBs) between graphene and h-BN grains may have unique physical properties, which have not been well understood. Here we have conducted non-equilibrium molecular dynamics simulations to study the energetic and thermal properties of tilt GBs in G/h-BN heterostructures. The effect of misorientation angles of tilt GBs on both GB energy and interfacial thermal conductance are investigated.
Resumo:
Organic solvents are commonly used in ink precursors of Cu2ZnSnS4 (CZTS) nanocrystals to make thin films for applications such as solar cells. However, the traces of carbon residual left behind by the organic solvents after high-temperature annealing is generally considered to restrict the growth of nanocrystals to form large grains. This work reported the first systematic study on the influence of carbon content of organic solvents on the grain growth of CZTS nanomaterial during high temperature sulfurization annealing. Solvents with carbon atom per molecule varying from 3 to 10 were used to made ink of CZTS nanocrystals for thin film deposition. It has been found that, after high temperature sulfurization annealing, a bilayer structure was formed in the CZTS film using organic solvent containing 3 carbon atoms per solvent molecule based on glycerol and 1,3-propanediol. The top layer consisted of closelypacked large grains and the bottom layer was made of as-synthesized nanoparticles. In contrast, the CZTS film made with the solvent molecule with more carbon atoms including 1,5-pentanediol (5 carbon atoms) and 1,7-heptanediol (7 carbon atoms) consisted of nanoparticles embedded with large crystals. It is believed that the carbon residues left behind by the organic solvents affected the necking of CZTS nanocrystals to form large grains through influencing the surface property of nanocrystals. Furthermore, it has also been observed that the solvent affected the thickness of MoS2 layer which was formed between CZTS and Mo substrate. A thinner MoS2 film (50 nm) was obtained with the slurry using carbon-rich terpineol as solvent whereas the thickest MoS2 (350 nm) was obtained with the film made from 1,3-propanediol based solvent. The evaluation of the photoactivity of the CZTS thin films has demonstrated that a higher photocurrent was generated with the film containing more large grains.
Resumo:
Kafirin, a protein extracted from sorghum grain, has been formulated into microparticles and proposed for use as a delivery system owing to the resistance of kafirin to upper gastrointestinal digestion. However, extracting kafirin from sorghum distillers dried grains with solubles (DDGS) may be more efficient, because the carbohydrate component has been removed by fermentation. This study investigated the properties and use of kafirin extracted from DDGS to formulate microparticles. Prednisolone, an anti-inflammatory drug that could benefit from a delayed and targeted delivery system to the colon, was loaded into DDGS kafirin microparticles by phase separation with sodium chloride. Scanning electron micrographs revealed that the empty and prednisolone-loaded microparticles were round in shape and varied in size. Surface binding studies indicated prednisolone was loaded within the microparticles rather than being solely bound on the surface. These findings demonstrate DDGS kafirin can be formulated into microparticles and loaded with medication. Future studies could investigate the potential applications of DDGS kafirin microparticles as an orally administered targeted drug-delivery system.
Resumo:
Fan forced injection of phosphine gas fumigant into stored grain is a common method to treat infestation by insects. For low injection velocities the transport of fumigant can be modelled as Darcy flow in a porous medium where the gas pressure satisfies Laplace's equation. Using this approach, a closed form series solution is derived for the pressure, velocity and streamlines in a cylindrically stored grain bed with either a circular or annular inlet, from which traverse times are numerically computed. A leading order closed form expression for the traverse time is also obtained and found to be reasonable for inlet configurations close to the central axis of the grain storage. Results are interpreted for the case of a representative 6m high farm wheat store, where the time to advect the phosphine to almost the entire grain bed is found to be approximately one hour.
Resumo:
The phosphine distribution in a cylindrical silo containing grain is predicted. A three-dimensional mathematical model, which accounts for multicomponent gas phase transport and the sorption of phosphine into the grain kernel is developed. In addition, a simple model is presented to describe the death of insects within the grain as a function of their exposure to phosphine gas. The proposed model is solved using the commercially available computational fluid dynamics (CFD) software, FLUENT, together with our own C code to customize the solver in order to incorporate the models for sorption and insect extinction. Two types of fumigation delivery are studied, namely, fan- forced from the base of the silo and tablet from the top of the silo. An analysis of the predicted phosphine distribution shows that during fan forced fumigation, the position of the leaky area is very important to the development of the gas flow field and the phosphine distribution in the silo. If the leak is in the lower section of the silo, insects that exist near the top of the silo may not be eradicated. However, the position of a leak does not affect phosphine distribution during tablet fumigation. For such fumigation in a typical silo configuration, phosphine concentrations remain low near the base of the silo. Furthermore, we find that half-life pressure test readings are not an indicator of phosphine distribution during tablet fumigation.
Resumo:
Nitrogen fertiliser is a major source of atmospheric N2O and over recent years there is growing evidence for a non-linear, exponential relationship between N fertiliser application rate and N2O emissions. However, there is still high uncertainty around the relationship of N fertiliser rate and N2O emissions for many cropping systems. We conducted year-round measurements of N2O emission and lint yield in four N rate treatments (0, 90, 180 and 270 kg N ha-1) in a cotton-fallow rotation on a black vertosol in Australia. We observed a nonlinear exponential response of N2O emissions to increasing N fertiliser rates with cumulative annual N2O emissions of 0.55 kg N ha-1, 0.67kg N ha-1, 1.07 kg N ha-1 and 1.89 kg N ha-1 for the four respective N fertiliser rates while no N response to yield occurred above 180N. The N fertiliser induced annual N2O EF factors increased from 0.13% to 0.29% and 0.50% for the 90N, 180N and 270N treatments respectively, significantly lower than the IPCC Tier 1 default value (1.0 %). This non-linear response suggests that an exponential N2O emissions model may be more appropriate for use in estimating emission of N2O from soils cultivated to cotton in Australia. It also demonstrates that improved agricultural N management practices can be adopted in cotton to substantially reduce N2O emissions without affecting yield potential.
Resumo:
A novel sintering additive based on LiNO3 was used to overcome the drawbacks of poor sinterability and low grain boundary conductivity in BaZr0.8Y0.2O3-δ (BZY20) protonic conductors. The Li-additive totally evaporated during the sintering process at 1600°C for 6 h, which led to highly dense BZY20 pellets (96.5% of the theoretical value). The proton conductivity values of BZY20 with Li sintering-aid were significantly larger than the values reported for BZY sintered with other metal oxides, due to the fast proton transport in the "clean" grain boundaries and grain interior. The total conductivity of BZY20-Li in wet Ar was 4.45 × 10-3 S cm-1 at 600°C. Based on the improved sinterability, anode-supported fuel cells with 25 μm-thick BZY20-Li electrolyte membranes were fabricated by a co-firing technique. The peak power density obtained at 700°C for a BZY-Ni/BZY20-Li/La0.6Sr0.4Co0.2Fe 0.8O3-δ (LSCF)-BZY cell was 53 mW cm-2, which is significantly larger than the values reported for fuel cells using electrolytes made of BZY sintered with the addition of ZnO and CuO, confirming the advantage of using Li as a sintering aid.