58 resultados para Gertrude Stein
Resumo:
The cliché about modern architecture being the fairy-tale fulfillment of every fantasy ceases to be a cliché only when it is accompanied by the fairy tale’s moral: that the fulfillment of the wishes rarely engenders goodness in the one doing the wishing (Adorno). Wishing for the right things in architecture and the city is the most difficult art of all: since the grim childhood-tales of the twentieth century we have been weaned from dreams and utopias, the stuff of modernism’s bad conscience. For Adorno writing in 1953, Hollywood cinema was a medium of “regression” based on infantile wish fulfillment manufactured by the industrial repetition (mimesis) of the filmic image that he called a modern “hieroglyphics,” like the archaic language of pictures in Ancient Egypt which guaranteed immortality after death in Egyptian burial rites. Arguably, today the iconic architecture industry is the executor of archaic images of modernity linked to rituals of death, promises of omnipotence and immortality. As I will argue in this symposium, such buildings are not a reflection of external ‘reality,’ but regression to an internal architectural polemic that secretly carries out the rituals of modernism’s death and seeks to make good on the liabilities of architectural history.
Resumo:
Objective: Given the Australian government’s current policy of placing asylum seekers into the community while their applications for asylum are being considered, it is important that mental health practitioners are able to offer culturally safe, sensitive, and competent services in this context. Method: A qualitative approach was used to interview seven practitioners, who provided services to asylum seekers at a specialist health clinic in the community. These professionals used their experience to identify the psychosocial issues faced by these asylum seekers, the challenges of providing culturally effective services to this group, and how these services can be improved. Result: Data were thematically analysed using NVivo. The findings indicated that participants perceived that clients experienced psychological, health, and cultural difficulties. The stress and uncertainty around visa applications emerged as the most severe factor impacting asylum seekers’ mental health. Working effectively with interpreters and culturally adapting assessment and treatment for these clients emerged as effective strategies. Gathering information in a conversational way and using clients’ different cultural explanatory models were methods used to identify and address mental health issues, rather than using formal measures. Interventions were eclectic and holistic, and reflected treatments that were appropriate for the clients’ cultural backgrounds. Conclusion: The study has implications for how psychological services are offered to asylum seekers in the community. Further, it identifies areas that can be incorporated in the future training of practitioners.
Resumo:
The NTRK1 gene (also known as TRKA) encodes a high-affinity receptor for NGF, a neurotrophin involved in nervous system development and myelination. NTRK1 has been implicated in neurological function via links between the T allele at rs6336 (NTRK1-T) and schizophrenia risk. A variant in the neurotrophin gene, BDNF, was previously associated with white matter integrity in young adults, highlighting the importantce of neurotrophins to white matter development. We hypothesized that NTRK1-T would relate to lower fractional anisotropy in healthy adults. We scanned 391 healthy adult human twins and their siblings (mean age: 23.6 ± 2.2 years; 31 NTRK1-T carriers, 360 non-carriers) using 105-gradient diffusion tensor imaging at 4 tesla. We evaluated in brain white matter how NTRK1-T and NTRK1 rs4661063 allele A (rs4661063-A, which is in moderate linkage disequilibrium with rs6336) related to voxelwise fractional anisotropy-acommondiffusion tensor imaging measure of white matter microstructure. We used mixed-model regression to control for family relatedness, age, and sex. The sample was split in half to test reproducibility of results. The false discovery rate method corrected for voxelwise multiple comparisons. NTRK1-T and rs4661063-A correlated with lower white matter fractional anisotropy, independent of age and sex (multiple-comparisons corrected: false discovery rate critical p=0.038 forNTRK1-Tand0.013 for rs4661063-A). In each half-sample, theNTRK1-T effectwasreplicated in the cingulum, corpus callosum, superior and inferior longitudinal fasciculi, inferior fronto-occipital fasciculus, superior corona radiata, and uncinate fasciculus. Our results suggest that NTRK1-T is important for developing white matter microstructure.
Resumo:
There is a strong genetic risk for late-onset Alzheimer's disease (AD), but so far few gene variants have been identified that reliably contribute to that risk. A newly confirmed genetic risk allele C of the clusterin (CLU) gene variant rs11136000 is carried by ~88% of Caucasians. The C allele confers a 1.16 greater odds of developing late-onset AD than the T allele. AD patients have reductions in regional white matter integrity. We evaluated whether the CLU risk variant was similarly associated with lower white matter integrity in healthy young humans. Evidence of early brain differences would offer a target for intervention decades before symptom onset. We scanned 398 healthy young adults (mean age, 23.6 ± 2.2 years) with diffusion tensor imaging, a variation of magnetic resonance imaging sensitive to white matter integrity in the living brain. We assessed genetic associations using mixed-model regression at each point in the brain to map the profile of these associations with white matter integrity. Each C allele copy of the CLUvariant was associated with lower fractional anisotropy-a widely accepted measure of white matter integrity-in multiple brain regions, including several known to degenerate in AD. These regions included the splenium of the corpus callosum, the fornix, cingulum, and superior and inferior longitudinal fasciculi in both brain hemispheres. Young healthy carriers of the CLU gene risk variant showed a distinct profile of lower white matter integrity that may increase vulnerability to developing AD later in life.
Resumo:
Reliable quantitative analysis of white matter connectivity in the brain is an open problem in neuroimaging, with common solutions requiring tools for fiber tracking, tractography segmentation and estimation of intersubject correspondence. This paper proposes a novel, template matching approach to the problem. In the proposed method, a deformable fiber-bundle model is aligned directly with the subject tensor field, skipping the fiber tracking step. Furthermore, the use of a common template eliminates the need for tractography segmentation and defines intersubject shape correspondence. The method is validated using phantom DTI data and applications are presented, including automatic fiber-bundle reconstruction and tract-based morphometry. © 2009 Elsevier Inc. All rights reserved.
Resumo:
The development of late-onset Alzheimer's disease (LOAD) is under strong genetic control and there is great interest in the genetic variants that confer increased risk. The Alzheimer's disease risk gene, growth factor receptor bound protein 2-associated protein (GAB2), has been shown to provide a 1.27- 1.51 increased odds of developing LOAD for rs7101429 major allele carriers, in case-control analysis. GAB2 is expressed across the brain throughout life, and its role in LOAD pathology is well understood. Recent studies have begun to examine the effect of genetic variation in the GAB2 gene on differences in the brain. However, the effect of GAB2 on the young adult brain has yet to be considered. Here we found a significant association between the GAB2 gene and morphological brain differences in 755 young adult twins (469 females) (M = 23.1, SD = 3.1 years), using a gene-based test with principal components regression (PCReg). Detectable differences in brain morphology are therefore associated with variation in the GAB2 gene, even in young adults, long before the typical age of onset of Alzheimer's disease.
Resumo:
Imaging genetics aims to discover how variants in the human genome influence brain measures derived from images. Genome-wide association scans (GWAS) can screen the genome for common differences in our DNA that relate to brain measures. In small samples, GWAS has low power as individual gene effects are weak and one must also correct for multiple comparisons across the genome and the image. Here we extend recent work on genetic clustering of images, to analyze surface-based models of anatomy using GWAS. We performed spherical harmonic analysis of hippocampal surfaces, automatically extracted from brain MRI scans of 1254 subjects. We clustered hippocampal surface regions with common genetic influences by examining genetic correlations (r(g)) between the normalized deformation values at all pairs of surface points. Using genetic correlations to cluster surface measures, we were able to boost effect sizes for genetic associations, compared to clustering with traditional phenotypic correlations using Pearson's r.
Resumo:
The discovery of several genes that affect the risk for Alzheimer's disease ignited a worldwide search for single-nucleotide polymorphisms (SNPs), common genetic variants that affect the brain. Genome-wide search of all possible SNP-SNP interactions is challenging and rarely attempted because of the complexity of conducting approximately 1011 pairwise statistical tests. However, recent advances in machine learning, for example, iterative sure independence screening, make it possible to analyze data sets with vastly more predictors than observations. Using an implementation of the sure independence screening algorithm (called EPISIS), we performed a genome-wide interaction analysis testing all possible SNP-SNP interactions affecting regional brain volumes measured on magnetic resonance imaging and mapped using tensor-based morphometry. We identified a significant SNP-SNP interaction between rs1345203 and rs1213205 that explains 1.9% of the variance in temporal lobe volume. We mapped the whole brain, voxelwise effects of the interaction in the Alzheimer's Disease Neuroimaging Initiative data set and separately in an independent replication data set of healthy twins (Queensland Twin Imaging). Each additional loading in the interaction effect was associated with approximately 5% greater brain regional brain volume (a protective effect) in both Alzheimer's Disease Neuroimaging Initiative and Queensland Twin Imaging samples.
Resumo:
The SNP-SNP interactome has rarely been explored in the context of neuroimaging genetics mainly due to the complexity of conducting approximately 10(11) pairwise statistical tests. However, recent advances in machine learning, specifically the iterative sure independence screening (SIS) method, have enabled the analysis of datasets where the number of predictors is much larger than the number of observations. Using an implementation of the SIS algorithm (called EPISIS), we used exhaustive search of the genome-wide, SNP-SNP interactome to identify and prioritize SNPs for interaction analysis. We identified a significant SNP pair, rs1345203 and rs1213205, associated with temporal lobe volume. We further examined the full-brain, voxelwise effects of the interaction in the ADNI dataset and separately in an independent dataset of healthy twins (QTIM). We found that each additional loading in the epistatic effect was associated with approximately 5% greater brain regional brain volume (a protective effect) in both the ADNI and QTIM samples.
Resumo:
The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08×10 -33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.
Resumo:
Deficits in lentiform nucleus volume and morphometry are implicated in a number of genetically influenced disorders, including Parkinson's disease, schizophrenia, and ADHD. Here we performed genome-wide searches to discover common genetic variants associated with differences in lentiform nucleus volume in human populations. We assessed structural MRI scans of the brain in two large genotyped samples: the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 706) and the Queensland Twin Imaging Study (QTIM; N = 639). Statistics of association from each cohort were combined meta-analytically using a fixed-effects model to boost power and to reduce the prevalence of false positive findings. We identified a number of associations in and around the flavin-containing monooxygenase (FMO) gene cluster. The most highly associated SNP, rs1795240, was located in the FMO3 gene; after meta-analysis, it showed genome-wide significant evidence of association with lentiform nucleus volume (PMA = 4. 79 × 10-8). This commonly-carried genetic variant accounted for 2. 68 % and 0. 84 % of the trait variability in the ADNI and QTIM samples, respectively, even though the QTIM sample was on average 50 years younger. Pathway enrichment analysis revealed significant contributions of this gene to the cytochrome P450 pathway, which is involved in metabolizing numerous therapeutic drugs for pain, seizures, mania, depression, anxiety, and psychosis. The genetic variants we identified provide replicated, genome-wide significant evidence for the FMO gene cluster's involvement in lentiform nucleus volume differences in human populations.
Resumo:
Control of iron homeostasis is essential for healthy central nervous system function: iron deficiency is associated with cognitive impairment, yet iron overload is thought to promote neurodegenerative diseases. Specific genetic markers have been previously identified that influence levels of transferrin, the protein that transports iron throughout the body, in the blood and brain. Here, we discovered that transferrin levels are related to detectable differences in the macro- and microstructure of the living brain. We collected brain MRI scans from 615 healthy young adult twins and siblings, of whom 574 were also scanned with diffusion tensor imaging at 4 Tesla. Fiber integrity was assessed by using the diffusion tensor imaging-based measure of fractional anisotropy. In bivariate genetic models based on monozygotic and dizygotic twins, we discovered that partially overlapping additive genetic factors influenced transferrin levels and brain microstructure. We also examined common variants in genes associated with transferrin levels, TF and HFE, and found that a commonly carried polymorphism (H63D at rs1799945) in the hemochromatotic HFE gene was associated with white matter fiber integrity. This gene has a well documented association with iron overload. Our statistical maps reveal previously unknown influences of the same gene on brain microstructure and transferrin levels. This discovery may shed light on the neural mechanisms by which iron affects cognition, neurodevelopment, and neurodegeneration.
Resumo:
We analyzed brain MRI data from 372 young adult twins toidentify cortical regions in which gray matter thickness and volume are influenced by genetics. This was achieved using an A/C/E structural equation model that divides the variance of these traits, at each point on the cortex, into additive genetic (A), shared (C), and unique environmental (E) components. A strong genetic influencewas found in frontal and parietal regions. Inaddition, we correlated cortical thickness with full-scale intelligence quotient for comparison with the A/C/E maps, and several regions where cortical structure was correlated with intelligence quotient are under genetic control. These cortical measures may be useful phenotypes to narrow the searchfor quantitative trait lociinfluencing brain structure.
Resumo:
We implemented least absolute shrinkage and selection operator (LASSO) regression to evaluate gene effects in genome-wide association studies (GWAS) of brain images, using an MRI-derived temporal lobe volume measure from 729 subjects scanned as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Sparse groups of SNPs in individual genes were selected by LASSO, which identifies efficient sets of variants influencing the data. These SNPs were considered jointly when assessing their association with neuroimaging measures. We discovered 22 genes that passed genome-wide significance for influencing temporal lobe volume. This was a substantially greater number of significant genes compared to those found with standard, univariate GWAS. These top genes are all expressed in the brain and include genes previously related to brain function or neuropsychiatric disorders such as MACROD2, SORCS2, GRIN2B, MAGI2, NPAS3, CLSTN2, GABRG3, NRXN3, PRKAG2, GAS7, RBFOX1, ADARB2, CHD4, and CDH13. The top genes we identified with this method also displayed significant and widespread post hoc effects on voxelwise, tensor-based morphometry (TBM) maps of the temporal lobes. The most significantly associated gene was an autism susceptibility gene known as MACROD2.We were able to successfully replicate the effect of the MACROD2 gene in an independent cohort of 564 young, Australian healthy adult twins and siblings scanned with MRI (mean age: 23.8±2.2 SD years). Our approach powerfully complements univariate techniques in detecting influences of genes on the living brain.
Resumo:
Several common genetic variants have recently been discovered that appear to influence white matter microstructure, as measured by diffusion tensor imaging (DTI). Each genetic variant explains only a small proportion of the variance in brain microstructure, so we set out to explore their combined effect on the white matter integrity of the corpus callosum. We measured six common candidate single-nucleotide polymorphisms (SNPs) in the COMT, NTRK1, BDNF, ErbB4, CLU, and HFE genes, and investigated their individual and aggregate effects on white matter structure in 395 healthy adult twins and siblings (age: 20-30 years). All subjects were scanned with 4-tesla 94-direction high angular resolution diffusion imaging. When combined using mixed-effects linear regression, a joint model based on five of the candidate SNPs (COMT, NTRK1, ErbB4, CLU, and HFE) explained ∼ 6% of the variance in the average fractional anisotropy (FA) of the corpus callosum. This predictive model had detectable effects on FA at 82% of the corpus callosum voxels, including the genu, body, and splenium. Predicting the brain's fiber microstructure from genotypes may ultimately help in early risk assessment, and eventually, in personalized treatment for neuropsychiatric disorders in which brain integrity and connectivity are affected.