105 resultados para Genetics of osteoporosis
Resumo:
The project applied analytical facilities to characterize the composition and mechanical properties of osteoporosis in maxillary bone using an ovariectomized rat model. It was found that osteoporotic jaw bone contained different amount of trace elements in comparison with the normal bone, which plays a significant role in bone quality. The knowledge generated from the study will assist the treatment of jaw bone fracture and dental implant placement.
Resumo:
Ankylosing spondylitis (AS) is a chronic inflammatory arthritis that affects the spine and sacroiliac joints. It causes significant disability and is associated with a number of other features including peripheral arthritis, anterior uveitis, psoriasis and inflammatory bowel disease (IBD). Significant progress has been made in the genetics of AS have in the last five years, leading to new treatments in trial, and major leaps in understanding of the aetiopathogenesis of the disease.
Resumo:
A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)1. Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ~10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2, 3, 4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation5, cis-acting expression quantitative trait loci6 and pathway analyses7, 8, 9—as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes—to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.
Resumo:
Ankylosing spondylitis (AS) and spondyloarthritis are strongly genetically determined. The long-standing association with HLA-B27 is well described, although the mechanism by which that association induces AS remains uncertain. Recent developments include the description of HLA-B27 tag single nucleotide polymorphisms in European and Asian populations. An increasing number of non-MHC genetic associations have been reported, which provided amongst other things the first evidence of the involvement of the IL-23 pathway in AS. The association with ERAP1 is now known to be restricted to HLA-B27 positive disease. Preliminary studies on the genetics of axial spondyloarthritis demonstrate a lower HLA-B27 carriage rate compared with AS. Studies with larger samples and including non-European ethnic groups are likely to further advance the understanding of the genetics of AS and spondyloarthritis. © 2012.
Resumo:
We performed a genome-wide association study (GWAS) in 1705 Parkinson's disease (PD) UK patients and 5175 UK controls, the largest sample size so far for a PD GWAS. Replication was attempted in an additional cohort of 1039 French PD cases and 1984 controls for the 27 regions showing the strongest evidence of association (P < 10 4). We replicated published associations in the 4q22/SNCA and 17q21/MAPT chromosome regions (P < 10 10) and found evidence for an additional independent association in 4q22/SNCA.A detailed analysis of the haplotype structure at 17q21 showed that there are three separate risk groups within this region. We found weak but consistent evidence of association for common variants located in three previously published associated regions (4p15/BST1, 4p16/GAK and 1q32/PARK16). We found no support for the previously reported SNP association in 12q12/LRRK2. We also found an association of the two SNPs in 4q22/SNCA with the age of onset of the disease. © The Author 2010. Published by Oxford University Press.
Resumo:
Context: Osteoporosis is a common, highly heritable condition that causes substantial morbidity and mortality, the etiopathogenesis of which is poorly understood. Genetic studies are making increasingly rapid progress in identifying the genes involved. Evidence Acquisition and Synthesis: In this review, we will summarize the current understanding of the genetics of osteoporosis based on publications from PubMed from the year 1987 onward. Conclusions: Most genes involved in osteoporosis identified to date encode components of known pathways involved in bone synthesis or resorption, but as the field progresses, new pathways are being identified. Only a small proportion of the total genetic variation involved in osteoporosis has been identified, and new approaches will be required to identify most of the remaining genes.
Resumo:
Rheumatoid arthritis is a common complex genetic disease, and, despite a significant genetic element, no gene other than HLA-DRB1 has been clearly demonstrated to be involved in the disease. However, this association accounts for less than half the overall genetic susceptibility. Investigation of other candidate genes, in particular those that reside within the major histocompatibility complex, are hampered by the presence of strong linkage disequilibrium and problems with study design. © 2004 Nature Publishing Group All rights reserved.
Resumo:
Variation in personality traits is 30-60% attributed to genetic influences. Attempts to unravel these genetic influences at the molecular level have, so far, been inconclusive. We performed the first genome-wide association study of Cloninger's temperament scales in a sample of 5117 individuals, in order to identify common genetic variants underlying variation in personality. Participants' scores on Harm Avoidance, Novelty Seeking, Reward Dependence, and Persistence were tested for association with 1,252,387 genetic markers. We also performed gene-based association tests and biological pathway analyses. No genetic variants that significantly contribute to personality variation were identified, while our sample provides over 90% power to detect variants that explain only 1% of the trait variance. This indicates that individual common genetic variants of this size or greater do not contribute to personality trait variation, which has important implications regarding the genetic architecture of personality and the evolutionary mechanisms by which heritable variation is maintained.
Resumo:
OBJECTIVES To investigate: - (1) whether shared genetic factors influence migraine and anxious depression; - (2) whether the genetic architecture of migraine depends on anxious depression; - (3) whether the association between migraine and anxious depression is causal. BACKGROUND Migraine and anxious depression frequently occur together, but little is known about the mechanisms causing this association. METHODS A twin study was conducted to model the genetic architecture of migraine and anxious depression and the covariance between them. Anxious depression was also added to the model as a moderator variable to examine whether anxious depression affects the genetic architecture of migraine. Causal models were explored with the co-twin control method. RESULTS Modest but significant phenotypic (rP=0.28), genetic (rG=0.30), and nonshared environmental (rE=0.26) correlations were found between the 2 traits. Interestingly, the heritability of migraine depended on the level of anxious depression: the higher the anxious depression score, the lower the relative contribution of genetic factors to the individual differences in migraine susceptibility. The observed risk patterns in discordant twins are most consistent with a bidirectional causal relationship. CONCLUSIONS These findings confirm the genetic association between migraine and anxious depression and are consistent with a syndromic association between the 2 traits. This highlights the importance of taking comorbidity into account in genetic studies of migraine, especially in the context of selection for large-scale genotyping efforts. Genetic studies may be most effective when migraine with and without comorbid anxious depression are treated as separate phenotypes.
Resumo:
Acute anterior uveitis (AAU) involves inflammation of the iris and ciliary body of the eye. It occurs both in isolation and as a complication of ankylosing spondylitis (AS). It is strongly associated with HLA-B*27, but previous studies have suggested that further genetic factors may confer additional risk. We sought to investigate this using the Illumina Exomechip microarray, to compare 1504 cases with AS and AAU, 1805 with AS but no AAU and 21 133 healthy controls. We also used a heterogeneity test to test the differences in effect size between AS with AAU and AS without AAU. In the analysis comparing AS+AAU+ cases versus controls, HLA-B*27 and HLA-A*02:01 were significantly associated with the presence of AAU (P<10−300 and P=6 × 10−8, respectively). Secondary independent association with PSORS1C3 (P=4.7 × 10−5) and TAP2 (P=1.1 × 10−5) were observed in the major histocompatibility complex. There was a new suggestive association with a low-frequency variant at zinc-finger protein 154 in the AS without AAU versus control analysis (zinc-finger protein 154 (ZNF154), P=2.2 × 10−6). Heterogeneity testing showed that rs30187 in ERAP1 has a larger effect on AAU compared with that in AS alone. These findings also suggest that variants in ERAP1 have a differential impact on the risk of AAU when compared with AS, and hence the genetic risk for AAU differs from AS.
Resumo:
Ankylosing spondylitis (AS), an immune-mediated arthritis, is the prototypic member of a group of conditions known as spondyloarthropathies that also includes reactive arthritis, psoriatic arthritis and enteropathic arthritis. Patients with these conditions share a clinical predisposition for spinal and pelvic joint dysfunction, as well as genetic associations, notably with HLA-B*27. Spondyloarthropathies are characterized by histopathological inflammation in entheses (regions of high mechanical stress where tendons and ligaments insert into bone) and in the subchondral bone marrow, and by abnormal osteoproliferation at involved sites. The association of AS with HLA-B*27, first described >40 years ago, led to hope that the cause of the disease would be rapidly established. However, even though many theories have been advanced to explain how HLA-B*27 is involved in AS, no consensus about the answers to this question has been reached, and no successful treatments have yet been developed that target HLA-B27 or its functional pathways. Over the past decade, rapid progress has been made in discovering further genetic associations with AS that have shed new light on the aetiopathogenesis of the disease. Some of these discoveries have driven translational ideas, such as the repurposing of therapeutics targeting the cytokines IL-12 and IL-23 and other factors downstream of this pathway. AS provides an excellent example of how hypothesis-free research can lead to major advances in understanding pathogenesis and to the development of innovative therapeutic strategies.
Resumo:
Vertebral fracture risk is a heritable complex trait. The aim of this study was to identify genetic susceptibility factors for osteoporotic vertebral fractures applying a genome-wide association study (GWAS) approach. The GWAS discovery was based on the Rotterdam Study, a population-based study of elderly Dutch individuals aged >55years; and comprising 329 cases and 2666 controls with radiographic scoring (McCloskey-Kanis) and genetic data. Replication of one top-associated SNP was pursued by de-novo genotyping of 15 independent studies across Europe, the United States, and Australia and one Asian study. Radiographic vertebral fracture assessment was performed using McCloskey-Kanis or Genant semi-quantitative definitions. SNPs were analyzed in relation to vertebral fracture using logistic regression models corrected for age and sex. Fixed effects inverse variance and Han-Eskin alternative random effects meta-analyses were applied. Genome-wide significance was set at p<5×10-8. In the discovery, a SNP (rs11645938) on chromosome 16q24 was associated with the risk for vertebral fractures at p=4.6×10-8. However, the association was not significant across 5720 cases and 21,791 controls from 14 studies. Fixed-effects meta-analysis summary estimate was 1.06 (95% CI: 0.98-1.14; p=0.17), displaying high degree of heterogeneity (I2=57%; Qhet p=0.0006). Under Han-Eskin alternative random effects model the summary effect was significant (p=0.0005). The SNP maps to a region previously found associated with lumbar spine bone mineral density (LS-BMD) in two large meta-analyses from the GEFOS consortium. A false positive association in the GWAS discovery cannot be excluded, yet, the low-powered setting of the discovery and replication settings (appropriate to identify risk effect size >1.25) may still be consistent with an effect size <1.10, more of the type expected in complex traits. Larger effort in studies with standardized phenotype definitions is needed to confirm or reject the involvement of this locus on the risk for vertebral fractures.
Resumo:
Osteoporosis and Paget’s bone disease are the most common diseases of the bone. In addition to glucocorticoid treatment, there are many other secondary causes of osteoporosis. Bisphosphonates are used to treat these bone conditions. Zoledronic acid is the most potent bisphosphonate at inhibiting bone resorption. In osteoporosis, zoledronic acid increases bone mineral density for at least 1 year following a single intravenous administration. The efficacy and safety of zoledronic acid in the treatment of osteoporosis and Paget’s bone disease are reviewed. This article also covers the studies of the effects of zoledronic acid in the bone loss associated with the secondary osteoporosis.
Resumo:
This PhD study has examined the population genetics of the Russian wheat aphid (RWA, Diuraphis noxia), one of the world’s most invasive agricultural pests, throughout its native and introduced global range. Firstly, this study investigated the geographic distribution of genetic diversity within and among RWA populations in western China. Analysis of mitochondrial data from 18 sites provided evidence for the long-term existence and expansion of RWAs in western China. The results refute the hypothesis that RWA is an exotic species only present in China since 1975. The estimated date of RWA expansion throughout western China coincides with the debut of wheat domestication and cultivation practices in western Asia in the Holocene. It is concluded that western China represents the limit of the far eastern native range of this species. Analysis of microsatellite data indicated high contemporary gene flow among northern populations in western China, while clear geographic isolation between northern and southern populations was identified across the Tianshan mountain range and extensive desert regions. Secondly, this study analyzed the worldwide pathway of invasion using both microsatellite and endosymbiont genetic data. Individual RWAs were obtained from native populations in Central Asia and the Middle East and invasive populations in Africa and the Americas. Results indicated two pathways of RWA invasion from 1) Syria in the Middle East to North Africa and 2) Turkey to South Africa, Mexico and then North and South America. Very little clone diversity was identified among invasive populations suggesting that a limited founder event occurred together with predominantly asexual reproduction and rapid population expansion. The most likely explanation for the rapid spread (within two years) from South Africa to the New World is by human movement, probably as a result of the transfer of wheat breeding material. Furthermore, the mitochondrial data revealed the presence of a universal haplotype and it is proposed that this haplotype is representative of a wheat associated super-clone that has gained dominance worldwide as a result of the widespread planting of domesticated wheat. Finally, this study examined salivary gland gene diversity to determine whether a functional basis for RWA invasiveness could be identified. Peroxidase DNA sequence data were obtained for a selection of worldwide RWA samples. Results demonstrated that most native populations were polymorphic while invasive populations were monomorphic, supporting previous conclusions relating to demographic founder effects in invasive populations. Purifying selection most likely explains the existence of a universal allele present in Middle Eastern populations, while balancing selection was evident in East Asian populations. Selection acting on the peroxidase gene may provide an allele-dependent advantage linked to the successful establishment of RWAs on wheat, and ultimately their invasion potential. In conclusion, this study is the most comprehensive molecular genetic investigation of RWA population genetics undertaken to date and provides significant insights into the source and pathway of global invasion and the potential existence of a wheat-adapted genotype that has colonised major wheat growing countries worldwide except for Australia. This research has major biosecurity implications for Australia’s grain industry.
Resumo:
Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n 5 14 260), velocity of sound (VOS; n 5 15 514) and BMD (n 5 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n 5 11 452) and new genotyping in 15 cohorts (de novo n 5 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 3 108) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 3 1014). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 3 106 also had the expected direction of association with any fracture (P < 0.05), including threeSNPswithP < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, thisGWAstudy reveals the effect of several genescommon to central DXA-derivedBMDand heel ultrasound/DXAmeasures and points to anewgenetic locus with potential implications for better understanding of osteoporosis pathophysiology.