580 resultados para Gas distribution.
The Optimal Smoothing of the Wigner-Ville Distribution for Real-Life Signals Time-Frequency Analysis
Resumo:
Exhaust emissions from thirteen compressed natural gas (CNG) and nine ultralow sulphur diesel in-service transport buses were monitored on a chassis dynamometer. Measurements were carried out at idle and at three steady engine loads of 25%, 50% and 100% of maximum power at a fixed speed of 60 kmph. Emission factors were estimated for particle mass and number, carbon dioxide and oxides of nitrogen for two types of CNG buses (Scania and MAN, compatible with Euro 2 and 3 emission standards, respectively) and two types of diesel buses (Volvo Pre-Euro/Euro1 and Mercedez OC500 Euro3). All emission factors increased with load. The median particle mass emission factor for the CNG buses was less than 1% of that from the diesel buses at all loads. However, the particle number emission factors did not show a statistically significant difference between buses operating on the two types of fuel. In this paper, for the very first time, particle number emission factors are presented at four steady state engine loads for CNG buses. Median values ranged from the order of 1012 particles min-1 at idle to 1015 particles km-1 at full power. Most of the particles observed in the CNG emissions were in the nanoparticle size range and likely to be composed of volatile organic compounds The CO2 emission factors were about 20% to 30% greater for the diesel buses over the CNG buses, while the oxides of nitrogen emission factors did not show any difference due to the large variation between buses.
Resumo:
A new Expiratory Droplet Investigation System (EDIS) was used to conduct the most comprehensive program of study to date, of the dilution corrected droplet size distributions produced during different respiratory activities.----- Distinct physiological processes were responsible for specific size distribution modes. The majority of particles for all activities were produced in one or more modes, with diameters below 0.8 µm. That mode occurred during all respiratory activities, including normal breathing. A second mode at 1.8 µm was produced during all activities, but at lower concentrations.----- Speech produced particles in modes near 3.5 µm and 5 µm. The modes became most pronounced during continuous vocalization, suggesting that the aerosolization of secretions lubricating the vocal chords is a major source of droplets in terms of number.----- Non-eqilibrium droplet evaporation was not detectable for particles between 0.5 and 20 μm implying that evaporation to the equilibrium droplet size occurred within 0.8 s.
Resumo:
This review outlines current international patterns in prostate cancer incidence and mortality rates and survival, including recent trends and a discussion of the possible impact of prostate-specific antigen (PSA) testing on the observed data. Internationally, prostate cancer is the second most common cancer diagnosed among men (behind lung cancer), and is the sixth most common cause of cancer death among men. Prostate cancer is particularly prevalent in developed countries such as the United States and the Scandinavian countries, with about a six-fold difference between high-incidence and low-incidence countries. Interpretation of trends in incidence and survival are complicated by the increasing impact of PSA testing, particularly in more developed countries. As Western influences become more pronounced in less developed countries, prostate cancer incidence rates in those countries are tending to increase, even though the prevalence of PSA testing is relatively low. Larger proportions of younger men are being diagnosed with prostate cancer and living longer following diagnosis of prostate cancer, which has many implications for health systems. Decreasing mortality rates are becoming widespread among more developed countries, although it is not clear whether this is due to earlier diagnosis (PSA testing), improved treatment, or some combination of these or other factors.
Resumo:
This paper reports the initial steps of research on planning of rural networks for MV and LV. In this paper, two different cases are studied. In the first case, 100 loads are distributed uniformly on a 100 km transmission line in a distribution network and in the second case, the load structure become closer to the rural situation. In case 2, 21 loads are located in a distribution system so that their distance is increasing, distance between load 1 and 2 is 3 km, between 2 and 3 is 6 km, etc). These two models to some extent represent the distribution system in urban and rural areas, respectively. The objective function for the design of the optimal system consists of three main parts: cost of transformers, and MV and LV conductors. The bus voltage is expressed as a constraint and should be maintained within a standard level, rising or falling by no more than 5%.
Resumo:
Quantum key distribution (QKD) promises secure key agreement by using quantum mechanical systems. We argue that QKD will be an important part of future cryptographic infrastructures. It can provide long-term confidentiality for encrypted information without reliance on computational assumptions. Although QKD still requires authentication to prevent man-in-the-middle attacks, it can make use of either information-theoretically secure symmetric key authentication or computationally secure public key authentication: even when using public key authentication, we argue that QKD still offers stronger security than classical key agreement.
Resumo:
In this paper, the placement of sectionalizers, as well as, a cross-connection is optimally determined so that the objective function is minimized. The objective function employed in this paper consists of two main parts, the switch cost and the reliability cost. The switch cost is composed of the cost of sectionalizers and cross-connection and the reliability cost is assumed to be proportional to a reliability index, SAIDI. To optimize the allocation of sectionalizers and cross-connection problem realistically, the cost related to each element is considered as discrete. In consequence of binary variables for the availability of sectionalizers, the problem is extremely discrete. Therefore, the probability of local minimum risk is high and a heuristic-based optimization method is needed. A Discrete Particle Swarm Optimization (DPSO) is employed in this paper to deal with this discrete problem. Finally, a testing distribution system is used to validate the proposed method.
Resumo:
Isolation of a faulted segment, from either side of a fault, in a radial feeder that has several converter interfaced DGs is a challenging task when current sensing protective devices are employed. The protective device, even if it senses a downstream fault, may not operate if fault current level is low due to the current limiting operation of converters. In this paper, a new inverse type relay is introduced based on line admittance measurement to protect a distribution network, which has several converter interfaced DGs. The basic operation of this relay, its grading and reach settings are explained. Moreover a method is proposed to compensate the fault resistance such that the relay operation under this condition is reliable. Then designed relay performances are evaluated in a radial distribution network. The results are validated through PSCAD/EMTDC simulation and MATLAB calculations.
Resumo:
Dispersion characteristics of respiratory droplets in indoor environments are of special interest in controlling transmission of airborne diseases. This study adopts an Eulerian method to investigate the spatial concentration distribution and temporal evolution of exhaled and sneezed/coughed droplets within the range of 1.0~10.0μm in an office room with three air distribution methods, i.e. mixing ventilation (MV), displacement ventilation (DV), and under-floor air distribution (UFAD). The diffusion, gravitational settling, and deposition mechanism of particulate matters are well accounted in the one-way coupling Eulerian approach. The simulation results find that exhaled droplets with diameters up to 10.0μm from normal respiration process are uniformly distributed in MV, while they are trapped in the breathing height by thermal stratifications in DV and UFAD, resulting in a high droplet concentration and a high exposure risk to other occupants. Sneezed/coughed droplets are diluted much slower in DV/UFAD than in MV. Low air speed in the breathing zone in DV/UFAD can lead to prolonged residence of droplets in the breathing zone.