134 resultados para Fracture fixation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intramedullary nailing is the standard fixation method for displaced diaphyseal fractures of the tibia. An optimal nail design should both facilitate insertion and anatomically fit the bone geometry at its final position in order to reduce the risk of stress fractures and malalignments. Due to the nonexistence of suitable commercial software, we developed a software tool for the automated fit assessment of nail designs. Furthermore, we demonstrated that an optimised nail, which fits better at the final position, is also easier to insert. Three-dimensional models of two nail designs and 20 tibiae were used. The fitting was quantified in terms of surface area, maximum distance, sum of surface areas and sum of maximum distances by which the nail was protruding into the cortex. The software was programmed to insert the nail into the bone model and to quantify the fit at defined increment levels. On average, the misfit during the insertion in terms of the four fitting parameters was smaller for the Expert Tibial Nail Proximal bend (476.3 mm2, 1.5 mm, 2029.8 mm2, 6.5 mm) than the Expert Tibial Nail (736.7 mm2, 2.2 mm, 2491.4 mm2, 8.0 mm). The differences were statistically significant (p ≤ 0.05). The software could be used by nail implant manufacturers for the purpose of implant design validation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The formation of new blood vessels is a prerequisite for bone healing. CYR61 (CCN1), an extracellular matrix-associated signaling protein, is a potent stimulator of angiogenesis and mesenchymal stem cell expansion and differentiation. A recent study showed that CYR61 is expressed during fracture healing and suggested that CYR61 plays a significant role in cartilage and bone formation. The hypothesis of the present study was that decreased fixation stability, which leads to a delay in healing, would lead to reduced CYR61 protein expression in fracture callus. The aim of the study was to quantitatively analyze CYR61 protein expression, vascularization, and tissue differentiation in the osteotomy gap and relate to the mechanical fixation stability during the course of healing. A mid-shaft osteotomy of the tibia was performed in two groups of sheep and stabilized with either a rigid or semirigid external fixator, each allowing different amounts of interfragmentary movement. The sheep were sacrificed at 2, 3, 6, and 9 weeks postoperatively. The tibiae were tested biomechanically and histological sections from the callus were analyzed immunohistochemically with regard to CYR61 protein expression and vascularization. Expression of CYR61 protein was upregulated at the early phase of fracture healing (2 weeks), decreasing over the healing time. Decreased fixation stability was associated with a reduced upregulation of the CYR61 protein expression and a reduced vascularization at 2 weeks leading to a slower healing. The maximum cartilage callus fraction in both groups was reached at 3 weeks. However, the semirigid fixator group showed a significantly lower CYR61 immunoreactivity in cartilage than the rigid fixator group at this time point. The fraction of cartilage in the semirigid fixator group was not replaced by bone as quickly as in the rigid fixator group leading to an inferior histological and mechanical callus quality at 6 weeks and therefore to a slower healing. The results supply further evidence that CYR61 may serve as an important regulator of bone healing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mechanical microenvironment at a fracture site could potentially influence the outcomes of bone fracture healing. It is known that, should the fixation construct be too stiff, or the gap between the fracture ends be too large, bones are less likely to heal. Flexible fixation or so-called “biological fixation” has been shown to encourage the formation of fracture callus, and therefore result in better healing outcomes. However, till date the nature of the relationship between the degree of mechanical stability provided by a flexible fixation and optimal healing fracture healing outcomes has not been fully understood. This paper presents a computational model that can predict healing out-comes from early stage healing data under various fixation configurations. The results of the simulations demonstrate that the change of mechanical microenvironment of fracture site resulting from the different fixation configurations is of importance for the healing outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past ten years, minimally invasive plate osteosynthesis (MIPO) for the fixation of long bone fractures has become a clinically accepted method with good outcomes, when compared to the conventional open surgical approach (open reduction internal fixation, ORIF). However, while MIPO offers some advantages over ORIF, it also has some significant drawbacks, such as a more demanding surgical technique and increased radiation exposure. No clinical or experimental study to date has shown a difference between the healing outcomes in fractures treated with the two surgical approaches. Therefore, a novel, standardised severe trauma model in sheep has been developed and validated in this project to examine the effect of the two surgical approaches on soft tissue and fracture healing. Twenty four sheep were subjected to severe soft tissue damage and a complex distal femur fracture. The fractures were initially stabilised with an external fixator. After five days of soft tissue recovery, internal fixation with a plate was applied, randomised to either MIPO or ORIF. Within the first fourteen days, the soft tissue damage was monitored locally with a compartment pressure sensor and systemically by blood tests. The fracture progress was assessed fortnightly by x-rays. The sheep were sacrificed in two groups after four and eight weeks, and CT scans and mechanical testing performed. Soft tissue monitoring showed significantly higher postoperative Creatine Kinase and Lactate Dehydrogenase values in the ORIF group compared to MIPO. After four weeks, the torsional stiffness was significantly higher in the MIPO group (p=0.018) compared to the ORIF group. The torsional strength also showed increased values for the MIPO technique (p=0.11). The measured total mineralised callus volumes were slightly higher in the ORIF group. However, a newly developed morphological callus bridging score showed significantly higher values for the MIPO technique (p=0.007), with a high correlation to the mechanical properties (R2=0.79). After eight weeks, the same trends continued, but without statistical significance. In summary, this clinically relevant study, using the newly developed severe trauma model in sheep, clearly demonstrates that the minimally invasive technique minimises additional soft tissue damage and improves fracture healing in the early stage compared to the open surgical approach method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fracture healing is influenced by fixation stability and experimental evidence suggests that the initial mechanical conditions may determine the healing outcome. We hypothesised that mechanical conditions influence not only the healing outcome, but also the early phase of fracture healing. Additionally, it was hypothesised that decreased fixation stability characterised by an increased shear interfragmentary movement results in a delay in healing. Sixty-four sheep underwent a mid-shaft tibial osteotomy which was treated with either a rigid or a semi-rigid external fixator. Animals were sacrificed at 2, 3, 6 and 9 weeks postoperatively and the fracture callus was analysed using radiological, biomechanical and histological techniques. The tibia treated with semi-rigid fixation showed inferior callus stiffness and quality after 6 weeks. At 9 weeks, the calluses were no longer distinguishable in their mechanical competence. The calluses at 9 weeks produced under rigid fixation were smaller and consisted of a reduced fibrous tissue component. These results demonstrate that the callus formation over the course of healing differed both morphologically and in the rate of development. In this study, we provide evidence that the course of healing is influenced by the initial fixation stability. The semi-rigid fixator did not result in delayed healing, but a less optimal healing path was taken. An upper limit of stability required for successful healing remains unknown, however a limit by which healing is less optimal has been determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to clarify the relationship between the mechanical environment at the fracture site and endogenous fibroblast growth factor-2 (FGF-2). We compared two types of fracture healing with different callus formations and cellular events using MouseFix(TM) plate fixation systems for murine fracture models. Left femoral fractures were induced in 72 ten-week-old mice and then fixed with a flexible (Group F) or rigid (Group R) Mouse Fix(TM) plate. Mice were sacrificed on days 3, 5, 7, 10, 14, and 21. The callus volumes were measured by 3D micro-CT and tissues were histologically stained with hematoxylin & eosin or safranin-O. Sections from days 3, 5, and 7 were immunostained for FGF-2 and Proliferating Cell Nuclear Antigen (PCNA). The callus in Group F was significantly larger than that in Group R. The rigid plate allowed bone union without a marked external callus or chondrogenesis. The flexible plate formed a large external callus as a result of endochondral ossification. Fibroblastic cells in the granulation tissue on days 5 and 7 in Group F showed marked FGF-2 expression compared with Group R. Fibroblastic cells showed ongoing proliferation in granulation tissue in group F, as indicated by PCNA expression, which explained the relative granulation tissue increase in group F. There were major differences in early phase endogenous FGF-2 expression between these two fracture healing processes, due to different mechanical environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanically well-defined stabilization systems have only recently become available, providing standardized conditions for studying the role of the mechanical environment on mouse bone fracture healing. The aim of this study was to characterize the time course of strength recovery and callus development of mouse femoral osteotomies stabilized with either low or high flexibility (in bending and torsion) internal fixation plates. Animals were euthanized and femora excised at 14, 21, and 28 days post-osteotomy for microCT analysis and torsional strength testing. While a larger mineralized callus was observed in osteotomies under more flexible conditions at all time points, the earlier bridging of the mineralized callus under less flexible conditions by 1 week resulted in an earlier recovery of torsional strength in mice stabilized with low flexibility fixation. Ultimate torque values for these bones were significantly higher at 14 and 21 days post-osteotomy compared to bones with the more flexible stabilization. Our study confirms the high reproducibility of the results that are achieved with this new implant system, therefore making it ideal for studying the influence of the mechanical environment on murine fracture healing under highly standardized conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE. To evaluate the utility of blood cultures in the assessment of early postoperative fever in hip fracture patients with no other indicators of sepsis. METHODS. 101 blood cultures were drawn on postoperative days 0 to 5 to investigate 84 febrile episodes in 31 women and 30 men (mean age, 80 years) whose body temperature measured via the tympanic route was ≥38ºC. Culture results of these 61 patients were divided into culture-positive and culture-negative groups for comparison. RESULTS. Of the 101 blood cultures, only 2 were positive: one was obtained 5 days after dynamic hip screw fixation, and the other 4 days after hemiarthroplasty. Both blood cultures grew coagulase-negative staphylococcal species, which were deemed to be skin contaminants not requiring change of patient management. 44 of these patients were treated with oral or intravenous antibiotics for a period of time. CONCLUSION. The risk of bacteraemia in patients with postoperative fever but no other symptoms of infection is low. Routine procurement of blood cultures in such patients is ineffective and of limited utility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical conditions in the repair tissues are known to influence the outcome of fracture healing. These mechanical conditions are determined by the stiffness of fixation and limb loading. Experimental studies have shown that there is a range of beneficial fixation stiffness for timely healing and that fixation stiffness that is either too flexible or too stiff impairs callus healing. However, much less is known about how mechanical conditions influence the biological processes that make up the sequence of bone repair and if indeed mechanical stimulation is required at all stages of repair. Secondary bone healing occurs through a sequence of events broadly characterised by inflammation, proliferation, consolidation and remodelling. It is our hypothesis that a change in fixation stiffness from very flexible to stiff can shorten the time to healing relative to constant fixation stiffness. Flexible fixation has the benefit of promoting greater callus formation and needs to be applied during the proliferative stage of repair. The greater callus size helps to stabilize the fragments earlier allowing mineralization to occur faster. Together with stable/rigid fixation applied during the latter stage of repair to ensure mineralization of the callus. The predicted benefits of inverse dynamization are shortened healing in comparison to very flexible fixation and healing time comparable or faster than stable fixation with greater callus stiffness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To review records of 330 patients who underwent surgery for femoral neck fractures with or without preoperative anticoagulation therapy. METHODS Medical records of 235 women and 95 men aged 48 to 103 years (mean, 81.6; standard deviation [SD], 13.1) who underwent surgery for femoral neck fractures with or without preoperative anticoagulation therapy were reviewed. 30 patients were on warfarin, 105 on aspirin, 28 on clopidogrel, and 167 were controls. The latter 3 groups were combined as the non-warfarin group and compared with the warfarin group. Hospital mortality, time from admission to surgery, length of hospital stay, return to theatre, and postoperative complications (wound infection, deep vein thrombosis, and pulmonary embolism) were assessed. RESULTS The warfarin and control groups were significantly younger than the clopidogrel and aspirin groups (80.8 vs. 80.0 vs. 84.2 vs. 83.7 years, respectively, p<0.05). 81% of the patients underwent surgery within 48 hours of admission. The overall mean time from admission to surgery was 1.8 days; it was longer in the warfarin than the aspirin, clopidogrel, and control groups (3.3 vs. 1.8 vs. 1.6 vs. 1.6 days, respectively, p<0.001). The mean length of hospital stay was 17.5 (SD, 9.6; range, 3-54) days. The overall hospital mortality was 3.9%; it was 6.7% in the warfarin group, 3.8% in the aspirin group, 3.6% in the clopidogrel group, and 3.6% in the control group (p=0.80). Four patients returned to theatre for surgery: one in the warfarin group for washout of a haematoma, 2 in the aspirin group for repositioning of a mal-fixation and for debridement of wound infection, and one in the control group for debridement of wound infection. The warfarin group did not differ significantly from non-warfarin group in terms of postoperative complication rate (6.7% vs. 2.7%, p=0.228) and the rate of return to theatre (3.3% vs. 1%, p=0.318). CONCLUSION It is safe to continue aspirin and clopidogrel prior to surgical treatment for femoral neck fracture. The risk of delaying surgery outweighs the peri-operative bleeding risk.