909 resultados para Forest health
Resumo:
Until now health impact assessment and environmental impact assessment are two different issues, often not addressed together. Both issues have to be dealt with for sustainable building. The aim of this paper is to link healthy and sustainable housing in life cycle assessment. Two strategies are studied: clean air as a functional unity and health as a quality indicator. The strategies are illustrated with an example on the basis of Eco-Quantum, which is a Dutch whole-building assessment tool. It turns out that both strategies do not conflict with the LCA methodology. The LCA methodology has to be refined for this purpose.
Resumo:
The issue of whether improved building services such as air quality, provision of daylight, thermal comfort etc, have a positive impact on the health and productivity of building occupants is still an open question. There is significant anecdotal evidence supporting the notion that health and productivity of building occupants can be improved by improving the quality of the indoor environment, but there are actually few published quantitative studies to substantiate this contention. This paper reports on a comprehensive review of the worldwide literature which relates health of building occupants with the different aspects of the indoor environment which are believed to impact of these issues, with a particular focus on studies in Australia, The paper analyses the existing research and identifies the key deficiencies in our existing understanding of this problem. The key focus of this research is office and school buildings, but the scope of the literature surveyed includes all commercial buildings, including industrial buildings. There is a notable absence of detailed studies on this link in Australian buildings, although there are studies on thermal comfort, and a number of studies on indoor air quality in Australia, which do not make the connection to health and productivity. Many international studies have focused on improved lighting, and in particular the provision of daylight in buildings, but again there are few studies in Australia which focus in this area.
Resumo:
Some polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in air and have been implicated as carcinogenic materials. Therefore, literature is replete with studies that are focused on their occurrence and profiles in indoor and outdoor air samples. However, because the relative potency of individual PAHs vary widely, health risks associated with the presence of PAHs in a particular environment cannot be extrapolated directly from the concentrations of individual PAHs in that environment. In addition, database on the potency of PAH mixtures is currently limited. In this paper, we have utilized multi-criteria decision making methods (MCDMs) to simultaneously correlate PAH-related health risk in some microenvironments to the concentration levels, ethoxyresorufin-O-deethylase (EROD) activity induction equivalency factors and toxic equivalency factors (TEFs) of PAHs found in those microenvironments. The results showed that the relative risk associated with PAHs in different air samples depends on the index used. Nevertheless, this approach offers a promising tool that could help identify microenvironments of concern and assist the prioritisation of control strategies.