35 resultados para Flowering trees
Resumo:
The use of camera traps in wildlife management is an increasingly common practice. A phenomenon which is also becoming more common is for such camera traps to unintentionally film individuals engaged in a variety of activities, ranging from the innocent to the nefarious and including lewd or potentially embarrassing behaviour. It is therefore possible for the use of camera traps to accidentally encroach upon the privacy rights of persons who venture into the area of surveillance. In this chapter we describe the legal framework of privacy in Australia and discuss the potential risk of this sleeping tiger for users of camera traps. We also present the results of a survey of camera trap users to assess the frequency of such unintended captures and the nature of activity being filmed before discussing the practical implications of these laws for camera traps users in this country and make recommendations.
Resumo:
Objectives Demonstrate the application of decision trees – classification and regression trees (CARTs), and their cousins, boosted regression trees (BRTs) – to understand structure in missing data. Setting Data taken from employees at three different industry sites in Australia. Participants 7915 observations were included. Materials and Methods The approach was evaluated using an occupational health dataset comprising results of questionnaires, medical tests, and environmental monitoring. Statistical methods included standard statistical tests and the ‘rpart’ and ‘gbm’ packages for CART and BRT analyses, respectively, from the statistical software ‘R’. A simulation study was conducted to explore the capability of decision tree models in describing data with missingness artificially introduced. Results CART and BRT models were effective in highlighting a missingness structure in the data, related to the Type of data (medical or environmental), the site in which it was collected, the number of visits and the presence of extreme values. The simulation study revealed that CART models were able to identify variables and values responsible for inducing missingness. There was greater variation in variable importance for unstructured compared to structured missingness. Discussion Both CART and BRT models were effective in describing structural missingness in data. CART models may be preferred over BRT models for exploratory analysis of missing data, and selecting variables important for predicting missingness. BRT models can show how values of other variables influence missingness, which may prove useful for researchers. Conclusion Researchers are encouraged to use CART and BRT models to explore and understand missing data.
Resumo:
Despite longstanding concern with the dimensionality of the service quality construct as measured by ServQual and IS-ServQual instruments, variations on the IS-ServQual instrument have been enduringly prominent in both academic research and practice in the field of IS. We explain the continuing popularity of the instrument based on the salience of the item set for predicting overall customer satisfaction, suggesting that the preoccupation with the dimensions has been a distraction. The implicit mutual exclusivity of the items suggests a more appropriate conceptualization of IS-ServQual as a formative index. This conceptualization resolves the paradox in IS-ServQual research, that of how an instrument with such well-known and well-documented weaknesses continue to be very influential and widely used by academics and practitioners. A formative conceptualization acknowledges and addresses the criticisms of IS-ServQual, while simultaneously explaining its enduring salience by focusing on the items rather than the “dimensions.” By employing an opportunistic sample and adopting the most recent IS-ServQual instrument published in a leading IS journal (virtually, any valid IS- ServQual sample in combination with a previously tested instrument variant would suffice for study purposes), we demonstrate that when re-specified as both first-order and second-order formatives, IS-ServQual has good model quality metrics and high predictive power on customer satisfaction. We conclude that this formative specification has higher practical use and is more defensible theoretically.
Resumo:
PURPOSE To develop and test decision tree (DT) models to classify physical activity (PA) intensity from accelerometer output and Gross Motor Function Classification System (GMFCS) classification level in ambulatory youth with cerebral palsy (CP); and 2) compare the classification accuracy of the new DT models to that achieved by previously published cut-points for youth with CP. METHODS Youth with CP (GMFCS Levels I - III) (N=51) completed seven activity trials with increasing PA intensity while wearing a portable metabolic system and ActiGraph GT3X accelerometers. DT models were used to identify vertical axis (VA) and vector magnitude (VM) count thresholds corresponding to sedentary (SED) (<1.5 METs), light PA (LPA) (>/=1.5 and <3 METs) and moderate-to-vigorous PA (MVPA) (>/=3 METs). Models were trained and cross-validated using the 'rpart' and 'caret' packages within R. RESULTS For the VA (VA_DT) and VM decision trees (VM_DT), a single threshold differentiated LPA from SED, while the threshold for differentiating MVPA from LPA decreased as the level of impairment increased. The average cross-validation accuracy for the VC_DT was 81.1%, 76.7%, and 82.9% for GMFCS levels I, II, and III, respectively. The corresponding cross-validation accuracy for the VM_DT was 80.5%, 75.6%, and 84.2%, respectively. Within each GMFCS level, the decision tree models achieved better PA intensity recognition than previously published cut-points. The accuracy differential was greatest among GMFCS level III participants, in whom the previously published cut-points misclassified 40% of the MVPA activity trials. CONCLUSION GMFCS-specific cut-points provide more accurate assessments of MVPA levels in youth with CP across the full spectrum of ambulatory ability.