283 resultados para Flaxseed protein isolate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dasheen mosaic potyvirus (DsMV) is an important virus affecting taro. The virus has been found wherever taro is grown and infects both the edible and ornamental aroids, causing yield losses of up to 60%. The presence of DsMV, and other viruses,prevents the international movement of taro germplasm between countries. This has a significant negative impact on taro production in many countries due to the inability to access improved taro lines produced in breeding programs. To overcome this problem, sensitive and reliable virus diagnostic tests need to be developed to enable the indexing of taro germplasm. The aim of this study was to generate an antiserum against a recombinant DsMV coat protein (CP) and to develop a serological-based diagnostic test that would detect Pacific Island isolates of the virus. The CP-coding region of 16 DsMV isolates from Papua New Guinea, Samoa, Solomon Islands, French Polynesia, New Caledonia and Vietnam were amplified,cloned and sequenced. The size of the CP-coding region ranged from 939 to 1038 nucleotides and encoded putative proteins ranged from 313 to 346 amino acids, with the molecular mass ranging from 34 to 38 kDa. Analysis ofthe amino acid sequences revealed the presence of several amino acid motifs typically found in potyviruses,including DAG, WCIE/DN, RQ and AFDF. When the amino acid sequences were compared with each other and the DsMV sequences on the database, the maximum variability was21.9%. When the core region ofthe CP was analysed, the maximum variability dropped to 6% indicating most variability was present in the N terminus. Within seven PNG isolates ofDsMV, the maximum variability was 16.9% and 3.9% over the entire CP-coding region and core region, respectively. The sequence ofPNG isolate P1 was most similar to all other sequences. Phylogenetic analysis indicated that almost all isolates grouped according to their provenance. Further, the seven PNG isolates were grouped according to the region within PNG from which they were obtained. Due to the extensive variability over the entire CP-coding region, the core region ofthe CP ofPNG isolate Pl was cloned into a protein expression vector and expressed as a recombinant protein. The protein was purified by chromatography and SDS-PAGE and used as an antigen to generate antiserum in a rabbit. In western blots, the antiserum reacted with bands of approximately 45-47 kDa in extracts from purified DsMV and from known DsMV -infected plants from PNG; no bands were observed using healthy plant extracts. The antiserum was subsequently incorporated into an indirect ELISA. This procedure was found to be very sensitive and detected DsMV in sap diluted at least 1:1,000. Using both western blot and ELISA formats,the antiserum was able to detect a wide range ofDsMV isolates including those from Australia, New Zealand, Fiji, French Polynesia, New Caledonia, Papua New Guinea, Samoa, Solomon Islands and Vanuatu. These plants were verified to be infected with DsMV by RT-PCR. In specificity tests, the antiserum was also found to react with sap from plants infected with SCMV, PRSV-P, PRSV-W, but not with PVY or CMV -infected plants.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several lines of evidence implicate the p38 mitogen-activated protein kinase (p38 MAPK) in the proinflammatory response to bacterial agents and cytokines. Equally, the transcription factor, nuclear factor (NF)-kappaB, is recognized to be a critical determinant of the inflammatory response in intestinal epithelial cells (IECs). However, the precise inter-relationship between the activation of p38 MAPK and activation of the transcription factor NF-kappaB in the intestinal epithelial cell (IEC) system, remains unknown. Here we show that interleukin (IL)-1beta activates all three MAPKs in Caco-2 cells. The production of IL-8 and monocyte chemotactic protein 1 (MCP-1) was attenuated by 50% when these cells were preincubated with the p38 MAPK inhibitor, SB 203580. Further investigation of the NF-kappaB signalling system revealed that the inhibitory effect was independent of the phosphorylation and degradation of IkappaBalpha, the binding partner of NF-kappaB. This effect was also independent of the DNA binding of the p65 Rel A subunit, as well as transactivation, determined by an NF-kappaB luciferase construct, using both SB 203580 and dominant-negative p38 MAPK. Evaluation of IL-8 and MCP-1 RNA messages by reverse transcription-polymerase chain reaction (RT-PCR) revealed that the inhibitory effect of SB 203580 was associated with a reduction in this parameter. Using an IL-8-luciferase promoter construct, an effect of p38 upon its activation by both pharmacological and dominant-negative p38 construct co-transfection was demonstrated. It is concluded that p38 MAPK influences the expression of chemokines in intestinal epithelial cells, through an effect upon the activation of the chemokine promoter, and does not directly involve the activation of the transcription factor NF-kappaB

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current paradigm in soil organic matter (SOM) dynamics is that the proportion of biologically resistant SOM will increase when total SOM decreases. Recently, several studies have focused on identifying functional pools of resistant SOM consistent with expected behaviours. Our objective was to combine physical and chemical approaches to isolate and quantify biologically resistant SOM by applying acid hydrolysis treatments to physically isolated silt- and clay-sized soil fractions. Microaggegrate-derived and easily dispersed silt- and clay-sized fractions were isolated from surface soil samples collected from six long-term agricultural experiment sites across North America. These fractions were hydrolysed to quantify the non-hydrolysable fraction, which was hypothesized to represent a functional pool of resistant SOM. Organic C and total N concentrations in the four isolated fractions decreased in the order: native > no-till > conventional-till at all sites. Concentrations of non-hydrolysable C (NHC) and N (NHN) were strongly correlated with initial concentrations, and C hydrolysability was found to be invariant with management treatment. Organic C was less hydrolysable than N, and overall, resistance to acid hydrolysis was greater in the silt-sized fractions compared with the clay-sized fractions. The acid hydrolysis results are inconsistent with the current behaviour of increasing recalcitrance with decreasing SOM content: while %NHN was greater in cultivated soils compared with their native analogues, %NHC did not increase with decreasing total organic C concentrations. The analyses revealed an interaction between biochemical and physical protection mechanisms that acts to preserve SOM in fine mineral fractions, but the inconsistency of the pool size with expected behaviour remains to be fully explained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dental pulp cells (DPCs) are capable of differentiating into odontoblasts that secrete reparative dentin after pulp injury. The molecular mechanisms governing reparative dentinogenesis are yet to be fully understood. Here we investigated the differential protein profile of human DPCs undergoing odontogenic induction for 7 days. Using two-dimensional differential gel electrophoresis coupled with matrix-assisted laser adsorption ionization time of flight mass spectrometry, 2 3 protein spots related to the early odontogenic differentiation were identified. These proteins included cytoskeleton proteins, nuclear proteins, cell membrane-bound molecules, proteins involved in matrix synthesis, and metabolic enzymes. The expression of four identified proteins, which were heteronuclear ribonuclear proteins C, annexin VI, collagen type VI, and matrilin-2, was confirmed by Western blot and real-time realtime polymerase chain reaction analyses. This study generated a proteome reference map during odontoblast- like differentiation of human DPCs, which will be valuable to better understand the underlying molecular mechanisms in odontoblast-like differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoarthritis (OA) is the most common musculoskeletal disorder and represents a major health burden to society. In the course of the pathological development of OA, articular cartilage chondrocytes (ACCs) undergo atypical phenotype changes characterized by the expression of hypertrophic differentiation markers. Also, the adjacent subchondral bone shows signs of abnormal mineral density and enhanced production of bone turnover markers, indicative of osteoblast dysfunction. Collectively these findings indicate that the pathological changes typical of OA, involve alterations of the phenotypic properties of cells in both the subchondral bone and articular cartilage. However, the mechanism(s) by which these changes occur during OA development are not completely understood. The purpose of this project was to address the question of how subchondral bone osteoblasts (SBOs) and ACCs interact with each other with respect to regulation of respective cells’ phenotypic properties and in particular the involvement of mitogen activated protein kinase (MAPK) signalling pathways under normal and OA joint condition. We also endeavoured to test the influence of cross-talk between SBOs and ACCs isolated from normal and OA joint on matrix metalloproteinase (MMP) expression. For this purpose tissues from the knees of OA patients and normal controls were collected to isolate SBOs and ACCs. The cellular cross-talk of SBOs and ACCs were studied by means of both direct and indirect co-culture systems, which made it possible to identify the role of both membrane bound and soluble factors. Histology, immunohistochemistry, qRT-PCR, zymography, ELISA and western blotting were some of the techniques applied to distinguish the changes in the co-cultured vs. non co-cultured cells. The MAPK signalling pathways were probed by using targeted MAPK inhibitors, and their activity monitored by western blot analysis using phospho MAPK specific antibodies. Our co-culture studies demonstrated that OA ACCs enhanced the SBOs differentiation compared to normal ACCs. We demonstrated that OA ACCs induced these phenotypic changes in the SBOs via activating an ERK1/2 signalling pathway. The findings from this study thus provided clear evidence that OA ACCs play an integral role in altering the SBO phenotype. In the second study, we tested the influence of normal SBOs and OA SBOs on ACCs phenotype changes. The results showed that OA SBOs increased the hypertrophic gene expression in co-cultured ACCs compared to normal SBOs, a phenotype which is considered as pathological to the health and integrity of articular cartilage. It was demonstrated that these phenotype changes occurred via de-activation of p38 and activation of ERK1/2 signaling pathways. These findings suggest that the pathological interaction of OA SBOs with ACCs is mediated by cross-talking between ERK1/2 and p38 pathways, resulting in ACCs undergoing hypertrophic differentiation. Subsequent experiments to determine the effect on MMP regulation, of SBOs and ACCs cross-talk, revealed that co-culturing OA SBOs with ACCs significantly enhanced the proteolytic activity and expression of MMP-2 and MMP-9. In turn, co-culture of OA ACCs with SBOs led to abundant MMP-2 expression in SBOs. Furthermore, we showed that the addition of ERK1/2 and JNK inhibitors reversed the elevated MMP-2 and MMP-9 production which otherwise resulted from the interactions of OA SBOs-ACCs. Thus, this study has demonstrated that the altered interactions between OA SBOs-ACCs are capable of triggering the pathological pathways leading to degenerative changes seen in the osteoarthritic joint. In conclusion, the body of work presented in this dissertation has given clear in vitro evidence that the altered bi-directional communication of SBOs and ACCs may play a role in OA development and that this process was mediated by MAPK signalling pathways. Targeting these altered interactions by the use of MAPK inhibitors may provide the scientific rationale for the development of novel therapeutic strategies in the treatment and management of OA.