133 resultados para Fernando II, Rey de Aragón, 1452-1516
Resumo:
This book offers a fundamental challenge to a variety of theoretical, social, and political paradigms, ranging from law and justice studies to popular culture, linguistics to political activism. Developing the intellectual project initiated in Queering Paradigms, this volume extends queer theorizing in challenging new directions and uses queer insights to explore, trouble, and interrogate the social, political, and intellectual agendas that pervade (and are often taken for granted within) public discourses and academic disciplines. The contributing authors include queer theorists, socio-linguists, sociologists, political activists, educators, social workers and criminologists. Together, they contribute not only to the ongoing process of theorizing queerly, but also to the critique and reformulation of their respective disciplines.
Resumo:
The mechanism for the decomposition of hydrotalcite remains unsolved. Controlled rate thermal analysis enables this decomposition pathway to be explored. The thermal decomposition of hydrotalcites with hexacyanoferrite(II) and hexacyanoferrate(III) in the interlayer has been studied using controlled rate thermal analysis technology. X-ray diffraction shows the hydrotalcites studied have a d(003) spacing of 11.1 and 10.9 Å which compares with a d-spacing of 7.9 and 7.98 Å for the hydrotalcite with carbonate or sulphate in the interlayer. Calculations based upon CRTA measurements show that 7 moles of water is lost, proving the formula of hexacyanoferrite(II) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.5 .7 H2O and for the hexacyanoferrate(III) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.66 * 9 H2O. Dehydroxylation combined with CN unit loss occurs in three steps between a) 310 and 367°C b) 367 and 390°C and c) between 390 and 428°C for both the hexacyanoferrite(II) and hexacyanoferrate(III) intercalated hydrotalcite.