44 resultados para Extrathoracic Airway
Resumo:
GABAB receptors associate with Gi/o-proteins that regulate voltage-gated Ca(2+) channels and thus the intracellular Ca(2+) concentration ([Ca(2+)]i), there is also reported cross-regulation of phospholipase C. These associations have been studied extensively in the brain and also shown to occur in non-neural cells (e.g. human airway smooth muscle). More recently GABAB receptors have been observed in chick retinal pigment epithelium (RPE). The aims were to investigate whether the GABAB receptor subunits, GABAB1 and GABAB2, are co-expressed in cultured human RPE cells, and then determine if the GABAB receptor similarly regulates the [Ca(2+)]i of RPE cells and if phospholipase C is involved. Human RPE cells were cultured from 5 donor eye cups. Evidence for GABAB1 and GABAB2 mRNAs and proteins in the RPE cell cultures were investigated using real time PCR, western blots and immunofluorescence. The effects of the GABAB receptor agonist baclofen, antagonist CGP46381, a Gi/o-protein inhibitor pertussis toxin, and the phospholipase C inhibitor U73122 on [Ca(2+)]i in cultured human RPE were demonstrated using Fluo-3. Both GABAB1 and GABAB2 mRNA and protein were identified in cell cultures of human RPE; antibody staining was co-localized to the cell membrane and cytoplasm. One-hundred μM baclofen caused a transient increase in the [Ca(2+)]i of RPE cells regardless of whether Ca(2+) was added to the buffer. Baclofen induced increases in the [Ca(2+)]i were attenuated by pre-treatment with CGP46381, pertussis toxin, and U73122. GABAB1 and GABAB2 are co-expressed in cell cultures of human RPE. GABAB receptors in RPE regulate the [Ca(2+)]i via a Gi/o-protein and phospholipase C pathway.
Resumo:
An estimated one in 10 Australians has asthma. In 2010, the burden of disease for asthma was ranked 7th highest for the overall population in Australasia. A less well-known condition that also affects breathing, is vocal cord dysfunction (VCD). People with asthma and VCD can both present with similar symptoms such as coughing, difficulty breathing, wheezing and throat tightness. Asthma and VCD attacks also share similar triggers such as breathing in lung irritants, exercising or having an upper respiratory infection. Asthma and VCD frequently coexist. They affect different parts of the respiratory system and appear to have separate aetiologies. Asthma is essentially a condition of airway inflammation, even though the most prominent clinical presentation is bronchoconstriction. which is responsible for symptoms such as wheezing and shortness of breath. The cause of VCD is not well understood, though the abnormal closing of the vocal cords during breathing does not appear to involve an immune reaction, or the lower airways...
Resumo:
Background As relatively little is known about adult wheeze and asthma in developing countries, this study aimed to determine the predictors of wheeze, asthma diagnosis, and current treatment in a national survey of South African adults. Methods A stratified national probability sample of households was drawn and all adults (>14 years) in the selected households were interviewed. Outcomes of interest were recent wheeze, asthma diagnosis, and current use of asthma medication. Predictors of interest were sex, age, household asset index, education, racial group, urban residence, medical insurance, domestic exposure to smoky fuels, occupational exposure, smoking, body mass index, and past tuberculosis. Results A total of 5671 men and 8155 women were studied. Although recent wheeze was reported by 14.4% of men and 17.6% of women and asthma diagnosis by 3.7% of men and 3.8% of women, women were less likely than men to be on current treatment (OR 0.6; 95% confidence interval (CI) 0.5 to 0.8). A history of tuberculosis was an independent predictor of both recent wheeze (OR 3.4; 95% CI 2.5 to 4.7) and asthma diagnosis (OR 2.2; 95% CI 1.5 to 3.2), as was occupational exposure (wheeze: OR 1.8; 95% CI 1.5 to 2.0; asthma diagnosis: OR 1.9; 95% CI 1.4 to 2.4). Smoking was associated with wheeze but not asthma diagnosis. Obesity showed an association with wheeze only in younger women. Both wheeze and asthma diagnosis were more prevalent in those with less education but had no association with the asset index. Independently, having medical insurance was associated with a higher prevalence of diagnosis. Conclusions Some of the findings may be to due to reporting bias and heterogeneity of the categories wheeze and asthma diagnosis, which may overlap with post tuberculous airways obstruction and chronic obstructive pulmonary disease due to smoking and occupational exposures. The results underline the importance of controlling tuberculosis and occupational exposures as well as smoking in reducing chronic respiratory morbidity. Validation of the asthma questionnaire in this setting and research into the pathophysiology of post tuberculous airways obstruction are also needed.
Resumo:
Ultrafine particles are particles that are less than 0.1 micrometres (µm) in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children’s health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT) and multiple breath nitrogen washout test (MBNW) (to assess airway function), fraction of exhaled nitric oxide (FeNO, to assess airway inflammation), blood cotinine levels (to assess exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels (to measure systemic inflammation). A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study.
Resumo:
Introduction: Exposure to bioaerosols in indoor environments has been linked to various adverse health effects, such as airway disorders and upper respiratory tract symptoms. The aim of this study was to assess exposure to bioaerosols in the school environment in Brisbane, Australia. Methods: Culturable fungi and endotoxin measurements were conducted in six schools between October 2010 and May 2011. Culturable fungi (2 indoor air and 1-2 outdoor air samples per school) were assessed using a Biotest RCS High Flow Air Sampler, with a flow rate of either 50L/min or 20L/min. A rose pengar agar was used for recovery, which was incubated prior to counting and partial identification. Endotoxins were sampled (8h, 2L/min) using SKC glass fibre filters (4 indoor air samples per school) and analysed using an endpoint chromogenic LAL assay. Results: The arithmetic mean for fungi concentration in indoor and outdoor air was 710 cfu/m3(125- 1900 cfu/m3) and 524 cfu/m3 (140-1250 cfu/m3), respectively. The most frequently isolated fungal genus from the outdoor air was Cladosporium (over 40 %), followed by isolated Penicillium (21%) and Aspergillus (12%). The percent of Penicillium, Cladosporium and Aspergillus in indoor air samples was 32%, 32% and 8%, respectively. The aritmetic mean of endotoxin concentration was 0.59 EU/m3 (0-2,2 EU/m3). Discussion: The results of the current study are in agreement with previously reported studies, in that airborne fungi and endotoxin concentrations varied extensively, and were mostly dependent on climatic conditions. In addition, the indoor air mycoflora largely reflected the fungal flora present in the outdoor air, with Cladosporium being the most common in both outdoor and indoor (with Penicillium) air. In indoor air, unusually high endotoxin levels, over 1 EU/m3, were detected at 2 schools. Although these schools were not affected by the recent Brisbane floods, persistent rain prior to and during the study perios could explain the results.
Resumo:
The main aim of the present study was to estimate size segregated doses from e-cigarette aerosols as a function of the airway generation number in lung lobes.. After a 2-second puff, 7.7×1010 particles (DTot) with a surface area of 3.6×103 mm2 (STot), and 3.3×1010 particles with a surface area of 4.2×103 mm2 were deposited in the respiratory system for the electronic and conventional cigarettes, respectively. Alveolar and tracheobronchial deposited doses were compared to the ones received by non-smoking individuals in Western countries, showing a similar order of magnitude. Total regional doses (DR), in head and lobar tracheobronchial and alveolar regions, ranged from 2.7×109 to 1.3×1010 particles and 1.1×109 to 5.3×1010 particles, for the electronic and conventional cigarettes, respectively. DR in the right-upper lung lobe was about twice that found in left-upper lobe and 20% greater in right-lower lobe than the left-lower lobe.
Resumo:
Background and objective Individuals with chronic obstructive pulmonary disease (COPD) are at a high risk of developing significant complications from infection with the influenza virus. It is therefore vital to ensure that prophylaxis with the influenza vaccine is effective in COPD. The aim of this study was to assess the immunogenicity of the 2010 trivalent influenza vaccine in persons with COPD compared to healthy subjects without lung disease, and to examine clinical factors associated with the serological response to the vaccine. Methods In this observational study, 34 subjects (20 COPD, 14 healthy) received the 2010 influenza vaccine. Antibody titers at baseline and 28 days post-vaccination were measured using the hemagglutination inhibition assay (HAI) assay. Primary endpoints included seroconversion (≥4-fold increase in antibody titers from baseline) and the fold increase in antibody titer after vaccination. Results Persons with COPD mounted a significantly lower humoral immune response to the influenza vaccine compared to healthy participants. Seroconversion occurred in 90% of healthy participants, but only in 43% of COPD patients (P=0.036). Increasing age and previous influenza vaccination were associated with lower antibody responses. Antibody titers did not vary significantly with cigarette smoking, presence of other comorbid diseases, or COPD severity. Conclusion The humoral immune response to the 2010 influenza vaccine was lower in persons with COPD compared to non-COPD controls. The antibody response also declined with increasing age and in those with a history of prior vaccination.
Resumo:
BACKGROUND Bronchiectasis is a major contributor to chronic respiratory morbidity and mortality worldwide. Wheeze and other asthma-like symptoms and bronchial hyperreactivity may occur in people with bronchiectasis. Physicians often use asthma treatments in patients with bronchiectasis. OBJECTIVES To assess the effects of inhaled long-acting beta2-agonists (LABA) combined with inhaled corticosteroids (ICS) in children and adults with bronchiectasis during (1) acute exacerbations and (2) stable state. SEARCH METHODS The Cochrane Airways Group searched the the Cochrane Airways Group Specialised Register of Trials, which includes records identified from the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE and other databases. The Cochrane Airways Group performed the latest searches in October 2013. SELECTION CRITERIA All randomised controlled trials (RCTs) of combined ICS and LABA compared with a control (placebo, no treatment, ICS as monotherapy) in children and adults with bronchiectasis not related to cystic fibrosis (CF). DATA COLLECTION AND ANALYSIS Two review authors extracted data independently using standard methodological procedures as expected by The Cochrane Collaboration. MAIN RESULTS We found no RCTs comparing ICS and LABA combination with either placebo or usual care. We included one RCT that compared combined ICS and LABA with high-dose ICS in 40 adults with non-CF bronchiectasis without co-existent asthma. All participants received three months of high-dose budesonide dipropionate treatment (1600 micrograms). After three months, participants were randomly assigned to receive either high-dose budesonide dipropionate (1600 micrograms per day) or a combination of budesonide with formoterol (640 micrograms of budesonide and 18 micrograms of formoterol) for three months. The study was not blinded. We assessed it to be an RCT with overall high risk of bias. Data analysed in this review showed that those who received combined ICS-LABA (in stable state) had a significantly better transition dyspnoea index (mean difference (MD) 1.29, 95% confidence interval (CI) 0.40 to 2.18) and cough-free days (MD 12.30, 95% CI 2.38 to 22.2) compared with those receiving ICS after three months of treatment. No significant difference was noted between groups in quality of life (MD -4.57, 95% CI -12.38 to 3.24), number of hospitalisations (odds ratio (OR) 0.26, 95% CI 0.02 to 2.79) or lung function (forced expiratory volume in one second (FEV1) and forced vital capacity (FVC)). Investigators reported 37 adverse events in the ICS group versus 12 events in the ICS-LABA group but did not mention the number of individuals experiencing adverse events. Hence differences between groups were not included in the analyses. We assessed the overall evidence to be low quality. AUTHORS' CONCLUSIONS In adults with bronchiectasis without co-existent asthma, during stable state, a small single trial with a high risk of bias suggests that combined ICS-LABA may improve dyspnoea and increase cough-free days in comparison with high-dose ICS. No data are provided for or against, the use of combined ICS-LABA in adults with bronchiectasis during an acute exacerbation, or in children with bronchiectasis in a stable or acute state. The absence of high quality evidence means that decisions to use or discontinue combined ICS-LABA in people with bronchiectasis may need to take account of the presence or absence of co-existing airway hyper-responsiveness and consideration of adverse events associated with combined ICS-LABA.
Resumo:
Background Exposure to air pollutants, including diesel particulate matter, has been linked to adverse respiratory health effects. Inhaled diesel particulate matter contains adsorbed organic compounds. It is not clear whether the adsorbed organics or the residual components are more deleterious to airway cells. Using a physiologically relevant model, we investigated the role of diesel organic content on mediating cellular responses of primary human bronchial epithelial cells (HBECs) cultured at an air-liquid interface (ALI). Methods Primary HBECs were cultured and differentiated at ALI for at least 28 days. To determine which component is most harmful, we compared primary HBEC responses elicited by residual (with organics removed) diesel emissions (DE) to those elicited by neat (unmodified) DE for 30 and 60 minutes at ALI, with cigarette smoke condensate (CSC) as the positive control, and filtered air as negative control. Cell viability (WST-1 cell proliferation assay), inflammation (TNF-α, IL-6 and IL-8 ELISA) and changes in gene expression (qRT-PCR for HO-1, CYP1A1, TNF-α and IL-8 mRNA) were measured. Results Immunofluorescence and cytological staining confirmed the mucociliary phenotype of primary HBECs differentiated at ALI. Neat DE caused a comparable reduction in cell viability at 30 or 60 min exposures, whereas residual DE caused a greater reduction at 60 min. When corrected for cell viability, cytokine protein secretion for TNF-α, IL-6 and IL-8 were maximal with residual DE at 60 min. mRNA expression for HO-1, CYP1A1, TNF-α and IL-8 was not significantly different between exposures. Conclusion This study provides new insights into epithelial cell responses to diesel emissions using a physiologically relevant aerosol exposure model. Both the organic content and residual components of diesel emissions play an important role in determining bronchial epithelial cell response in vitro. Future studies should be directed at testing potentially useful interventions against the adverse health effects of air pollution exposure.
Resumo:
Aim: Dipalmitoylphosphatidycholine (DPPC) is the characteristic and main constituent of surfactant. Adsorption of surfactant to epithelial surfaces may be important in the masking of receptors. The aims of the study were to (i) compare the quantity of free DPPC in the airways and gastric aspirates of children with gastroesophageal reflux disease (GORD) to those without and (ii) describe the association between free DPPC levels with airway cellular profile and capsaicin cough sensitivity. Methods: Children aged <14 years were defined as 'coughers' if a history of cough in association with their GORD symptoms was elicited before gastric aspirates and nonbronchoscopic bronchoalveolar lavage (BAL) were obtained during elective flexible upper gastrointestinal endoscopy. GORD was defined as histological presence of reflux oesophagitis. Spirometry and capsaicin cough-sensitivity test was carried out in children aged >6 years before the endoscopy. Results: Median age of the 68 children was 9 years (interquartile range (IQR) 7.2). Median DPPC level in BAL of children with cough (72.7 μg/mL) was similar to noncoughers (88.5). There was also no significant difference in DPPC levels in both BAL and gastric aspirates of children classified according to presence of GORD. There was no correlation between DPPC levels and cellular counts or capsaicin cough-sensitivity outcome measures. Conclusion: We conclude that free DPPC levels in the airways and gastric aspirate is not influenced by presence of cough or GORD defined by histological presence of reflux oesophagitis. Whether quantification of adsorbed surfactant differs in these groups remain unknown. Free DPPC is unlikely to have a role in masking of airway receptors. © 2006 Royal Australasian College of Physicians.
Resumo:
Tracheal cartilage has been widely regarded as a linear elastic material either in experimental studies or in analytic and numerical models. However, it has been recently demonstrated that, like other fiber-oriented biological tissues, tracheal cartilage is a nonlinear material, which displays higher strength in compression than in extension. Considering the nonlinearity requires a more complex theoretical frame work and costs more to simulate. This study aims to quantify the deviation due to the simplified treatment of the tracheal cartilage as a linear material. It also evaluates the improved accuracy gained by considering the nonlinearity. Pig tracheal rings were used to exam the mechanical properties of cartilage and muscular membrane. By taking into account the asymmetric shape of tracheal cartilage, the collapse behavior of complete rings was simulated, and the compliance of airway and stress in the muscular membrane were discussed. The results obtained were compared with those assuming linear mechanical properties. The following results were found: (1) Models based on both types of material properties give a small difference in representing collapse behavior; (2) regarding compliance, the relative difference is big, ranging from 10 to 40% under negative pressure conditions; and (3) the difference in determining stress in the muscular membrane is small too: <5%. In conclusion, treating tracheal cartilage as a linear material will not cause big deviations in representing the collapse behavior, and mechanical stress in the muscular part, but it will induce a big deviation in predicting the compliance, particularly when the transmural pressure is lower than -0.5 kPa. The results obtained in this study may be useful in both understanding the collapse behavior of trachea and in evaluating the error induced by the simplification of treating the tracheal cartilage as a linear elastic material.
Resumo:
The shape of tracheal cartilage has been widely treated as symmetric in analytical and numerical models. However, according to both histological images and in vivo medical image, tracheal cartilage is of highly asymmetric shape. Taking the cartilage as symmetric structure will induce bias in calculation of the collapse behavior, as well as compliance and muscular stress. However, this has been rarely discussed. In this paper, tracheal collapse is represented by considering its asymmetric shape. For comparison, the symmetric shape, which is reconstructed by half of the cartilage, is also presented. A comparison of cross-sectional area, compliance of airway and stress in the muscular membrane, determined by asymmetric shape and symmetric shape is made. The result indicates that the symmetric assumption brings a small error, around 5% in predicting the cross-sectional area under loading conditions. The relative error of compliance is more than 10%. Particularly when the pressure is close to zero, the error could be more than 50%. The model considering the symmetric shape results in a significant difference in predicting stress in muscular membrane by either under- or over-estimating it. In conclusion, tracheal cartilage should not be treated as a symmetric structure. The results obtained in this study are helpful in evaluating the error induced by the assumption in geometry.
Resumo:
Background: Despite being the stiffest airway of the bronchial tree, the trachea undergoes significant deformation due to intrathoracic pressure during breathing. The mechanical properties of the trachea affect the flow in the airway and may contribute to the biological function of the lung. Method: A Fung-type strain energy density function was used to investigate the nonlinear mechanical behavior of tracheal cartilage. A bending test on pig tracheal cartilage was performed and a mathematical model for analyzing the deformation of tracheal cartilage was developed. The constants included in the strain energy density function were determined by fitting the experimental data. Result: The experimental data show that tracheal cartilage is a nonlinear material displaying higher strength in compression than in tension. When the compression forces varied from -0.02 to -0.03 N and from -0.03 to -0.04 N, the deformation ratios were 11.03±2.18% and 7.27±1.59%, respectively. Both were much smaller than the deformation ratios (20.01±4.49%) under tension forces of 0.02 to 0.01 N. The Fung-type strain energy density function can capture this nonlinear behavior very well, whilst the linear stress-strain relation cannot. It underestimates the stability of trachea by exaggerating the displacement in compression. This study may improve our understanding of the nonlinear behavior of tracheal cartilage and it may be useful for the future study on tracheal collapse behavior under physiological and pathological conditions.
Resumo:
Aims and objectives To determine consensus across acute care specialty areas on core physical assessment skills necessary for early recognition of changes in patient status in general wards. Background Current approaches to physical assessment are inconsistent and have not evolved to meet increased patient and system demands. New models of nursing assessment are needed in general wards that ensure a proactive and patient safety approach. Design A modified Delphi study. Methods Focus group interviews with 150 acute care registered nurses (RNs) at a large tertiary referral hospital generated a framework of core skills that were developed into a web-based survey. We then sought consensus with a panel of 35 senior acute care RNs following a classical Delphi approach over three rounds. Consensus was predefined as at least 80% agreement for each skill across specialty areas. Results Content analysis of focus group transcripts identified 40 discrete core physical assessment skills. In the Delphi rounds, 16 of these were consensus validated as core skills and were conceptually aligned with the primary survey: (Airway) Assess airway patency; (Breathing) Measure respiratory rate, Evaluate work of breathing, Measure oxygen saturation; (Circulation) Palpate pulse rate and rhythm, Measure blood pressure by auscultation, Assess urine output; (Disability) Assess level of consciousness, Evaluate speech, Assess for pain; (Exposure) Measure body temperature, Inspect skin integrity, Inspect and palpate skin for signs of pressure injury, Observe any wounds, dressings, drains and invasive lines, Observe ability to transfer and mobilise, Assess bowel movements. Conclusions Among a large and diverse group of experienced acute care RNs consensus was achieved on a structured core physical assessment to detect early changes in patient status. Relevance to clinical practice Although further research is needed to refine the model, clinical application should promote systematic assessment and clinical reasoning at the bedside.