188 resultados para Error Vector Magnitude (EVM)
Resumo:
This study directly measured the load acting on the abutment of the osseointegrated implant system of transfemoral amputees during level walking, and studied the variability of the load within and among amputees. Twelve active transfemoral amputees (age: 54±12 years, mass:84.3±16.3 kg, height: 17.8±0.10 m) fitted with an osseointegrated implant for over 1 year participated in the study. The load applied on the abutment was measured during unimpeded, level walking in a straight line using a commercial six-channel transducer mounted between the abutment and the prosthetic knee. The pattern and the magnitude of the three-dimensional forces and moments were revealed. Results showed a low step-to-step variability of each subject, but a high subject-to-subject variability in local extrema of body-weight normalized forces and moments and impulse data. The high subject-to-subject variability suggests that the mechanical design of the implant system should be customized for each individual, or that a fit-all design should take into consideration the highest values of load within a broad range of amputees. It also suggests specific loading regime in rehabilitation training are necessary for a given subject. Thus the loading magnitude and variability demonstrated should be useful in designing an osseointegrated implant system better able to resist mechanical failure and in refining the rehabilitation protocol.
Resumo:
This thesis investigates the problem of robot navigation using only landmark bearings. The proposed system allows a robot to move to a ground target location specified by the sensor values observed at this ground target posi- tion. The control actions are computed based on the difference between the current landmark bearings and the target landmark bearings. No Cartesian coordinates with respect to the ground are computed by the control system. The robot navigates using solely information from the bearing sensor space. Most existing robot navigation systems require a ground frame (2D Cartesian coordinate system) in order to navigate from a ground point A to a ground point B. The commonly used sensors such as laser range scanner, sonar, infrared, and vision do not directly provide the 2D ground coordi- nates of the robot. The existing systems use the sensor measurements to localise the robot with respect to a map, a set of 2D coordinates of the objects of interest. It is more natural to navigate between the points in the sensor space corresponding to A and B without requiring the Cartesian map and the localisation process. Research on animals has revealed how insects are able to exploit very limited computational and memory resources to successfully navigate to a desired destination without computing Cartesian positions. For example, a honeybee balances the left and right optical flows to navigate in a nar- row corridor. Unlike many other ants, Cataglyphis bicolor does not secrete pheromone trails in order to find its way home but instead uses the sun as a compass to keep track of its home direction vector. The home vector can be inaccurate, so the ant also uses landmark recognition. More precisely, it takes snapshots and compass headings of some landmarks. To return home, the ant tries to line up the landmarks exactly as they were before it started wandering. This thesis introduces a navigation method based on reflex actions in sensor space. The sensor vector is made of the bearings of some landmarks, and the reflex action is a gradient descent with respect to the distance in sensor space between the current sensor vector and the target sensor vec- tor. Our theoretical analysis shows that except for some fully characterized pathological cases, any point is reachable from any other point by reflex action in the bearing sensor space provided the environment contains three landmarks and is free of obstacles. The trajectories of a robot using reflex navigation, like other image- based visual control strategies, do not correspond necessarily to the shortest paths on the ground, because the sensor error is minimized, not the moving distance on the ground. However, we show that the use of a sequence of waypoints in sensor space can address this problem. In order to identify relevant waypoints, we train a Self Organising Map (SOM) from a set of observations uniformly distributed with respect to the ground. This SOM provides a sense of location to the robot, and allows a form of path planning in sensor space. The navigation proposed system is analysed theoretically, and evaluated both in simulation and with experiments on a real robot.
Resumo:
This study considers the solution of a class of linear systems related with the fractional Poisson equation (FPE) (−∇2)α/2φ=g(x,y) with nonhomogeneous boundary conditions on a bounded domain. A numerical approximation to FPE is derived using a matrix representation of the Laplacian to generate a linear system of equations with its matrix A raised to the fractional power α/2. The solution of the linear system then requires the action of the matrix function f(A)=A−α/2 on a vector b. For large, sparse, and symmetric positive definite matrices, the Lanczos approximation generates f(A)b≈β0Vmf(Tm)e1. This method works well when both the analytic grade of A with respect to b and the residual for the linear system are sufficiently small. Memory constraints often require restarting the Lanczos decomposition; however this is not straightforward in the context of matrix function approximation. In this paper, we use the idea of thick-restart and adaptive preconditioning for solving linear systems to improve convergence of the Lanczos approximation. We give an error bound for the new method and illustrate its role in solving FPE. Numerical results are provided to gauge the performance of the proposed method relative to exact analytic solutions.
Resumo:
This research investigated underlying issues that were critical to the success of the bifocal trial and comprised of three studies. The first study evaluated if Chinese-Canadian children were suitable subjects for the bifocal trial. The high prevalence of myopia in Chinese children suggests that genetic input plays a role in myopia development, but the rapid increase in prevalence over the last few decades indicates environmental factors are also important. Since this bifocal trial was conducted in Canada, this work aimed to determine whether Chinese children who had migrated to Canada would still have high myopia prevalence and a high rate of myopia progression. The second study determined the optimal bifocal lens power for myopia treatment and the effect of incorporating base-in prism into the bifocal. In the majority of published myopia control studies, the power of the prescribed near addition was usually predetermined in the belief that the near addition would always help to improve the near focus. In fact, the effect of near addition on the accommodative error might be quite different even for individuals in which the same magnitude of accommodation lag had been measured. Therefore, this work was necessary to guide the selection of bifocal and prism powers most suitable for the subsequent bifocal trial. The third study, the ultimate goal of this research, was to conduct a longitudinal clinical trial to determine if bifocals and prismatic bifocals could control myopia progression in children.
Resumo:
This paper proposes a method of enhancing system stability with a distribution static compensator (DSTATCOM) in an autonomous microgrid with multiple distributed generators (DG). It is assumed that there are both inertial and non-inertial DGs connected to the microgrid. The inertial DG can be a synchronous machine of smaller rating while inertia less DGs (solar) are assumed as DC sources. The inertia less DGs are connected through Voltage Source Converter (VSC) to the microgrid. The VSCs are controlled by either state feedback or current feedback mode to achieve desired voltage-current or power outputs respectively. The power sharing among the DGs is achieved by drooping voltage angle. Once the reference for the output voltage magnitude and angle is calculated from the droop, state feedback controllers are used to track the reference. The angle reference for the synchronous machine is compared with the output voltage angle of the machine and the error is fed to a PI controller. The controller output is used to set the power reference of the synchronous machine. The rate of change in the angle in a synchronous machine is restricted by the machine inertia and to mimic this nature, the rate of change in the VSCs angles are restricted by a derivative feedback in the droop control. The connected distribution static compensator (DSTATCOM) provides ride through capability during power imbalance in the microgrid, especially when the stored energy of the inertial DG is not sufficient to maintain stability. The inclusion of the DSATCOM in such cases ensures the system stability. The efficacies of the controllers are established through extensive simulation studies using PSCAD.
Resumo:
The results of a numerical investigation into the errors for least squares estimates of function gradients are presented. The underlying algorithm is obtained by constructing a least squares problem using a truncated Taylor expansion. An error bound associated with this method contains in its numerator terms related to the Taylor series remainder, while its denominator contains the smallest singular value of the least squares matrix. Perhaps for this reason the error bounds are often found to be pessimistic by several orders of magnitude. The circumstance under which these poor estimates arise is elucidated and an empirical correction of the theoretical error bounds is conjectured and investigated numerically. This is followed by an indication of how the conjecture is supported by a rigorous argument.
Resumo:
Over the past decade, plants have been used as expression hosts for the production of pharmaceutically important and commercially valuable proteins. Plants offer many advantages over other expression systems such as lower production costs, rapid scale up of production, similar post-translational modification as animals and the low likelihood of contamination with animal pathogens, microbial toxins or oncogenic sequences. However, improving recombinant protein yield remains one of the greatest challenges to molecular farming. In-Plant Activation (InPAct) is a newly developed technology that offers activatable and high-level expression of heterologous proteins in plants. InPAct vectors contain the geminivirus cis elements essential for rolling circle replication (RCR) and are arranged such that the gene of interest is only expressed in the presence of the cognate viral replication-associated protein (Rep). The expression of Rep in planta may be controlled by a tissue-specific, developmentally regulated or chemically inducible promoter such that heterologous protein accumulation can be spatially and temporally controlled. One of the challenges for the successful exploitation of InPAct technology is the control of Rep expression as even very low levels of this protein can reduce transformation efficiency, cause abnormal phenotypes and premature activation of the InPAct vector in regenerated plants. Tight regulation over transgene expression is also essential if expressing cytotoxic products. Unfortunately, many tissue-specific and inducible promoters are unsuitable for controlling expression of Rep due to low basal activity in the absence of inducer or in tissues other than the target tissue. This PhD aimed to control Rep activity through the production of single chain variable fragments (scFvs) specific to the motif III of Tobacco yellow dwarf virus (TbYDV) Rep. Due to the important role played by the conserved motif III in the RCR, it was postulated that such scFvs can be used to neutralise the activity of the low amount of Rep expressed from a “leaky” inducible promoter, thus preventing activation of the TbYDV-based InPAct vector until intentional induction. Such scFvs could also offer the potential to confer partial or complete resistance to TbYDV, and possibly heterologous viruses as motif III is conserved between geminiviruses. Studies were first undertaken to determine the levels of TbYDV Rep and TbYDV replication-associated protein A (RepA) required for optimal transgene expression from a TbYDV-based InPAct vector. Transient assays in a non-regenerable Nicotiana tabacum (NT-1) cell line were undertaken using a TbYDV-based InPAct vector containing the uidA reporter gene (encoding GUS) in combination with TbYDV Rep and RepA under the control of promoters with high (CaMV 35S) or low (Banana bunchy top virus DNA-R, BT1) activity. The replication enhancer protein of Tomato leaf curl begomovirus (ToLCV), REn, was also used in some co-bombardment experiments to examine whether RepA could be substituted by a replication enhancer from another geminivirus genus. GUS expression was observed both quantitatively and qualitatively by fluorometric and histochemical assays, respectively. GUS expression from the TbYDV-based InPAct vector was found to be greater when Rep was expected to be expressed at low levels (BT1 promoter) rather than high levels (35S promoter). GUS expression was further enhanced when Rep and RepA were co-bombarded with a low ratio of Rep to RepA. Substituting TbYDV RepA with ToLCV REn also enhanced GUS expression but more importantly highest GUS expression was observed when cells were co-transformed with expression vectors directing low levels of Rep and high levels of RepA irrespective of the level of REn. In this case, GUS expression was approximately 74-fold higher than that from a non-replicating vector. The use of different terminators, namely CaMV 35S and Nos terminators, in InPAct vectors was found to influence GUS expression. In the presence of Rep, GUS expression was greater using pInPActGUS-Nos rather than pInPActGUS-35S. The only instance of GUS expression being greater from vectors containing the 35S terminator was when comparing expression from cells transformed with Rep, RepA and REnexpressing vectors and either non-replicating vectors, p35SGS-Nos or p35SGS-35S. This difference was most likely caused by an interaction of viral replication proteins with each other and the terminators. These results indicated that (i) the level of replication associated proteins is critical to high transgene expression, (ii) the choice of terminator within the InPAct vector may affect expression levels and (iii) very low levels of Rep can activate InPAct vectors hence controlling its activity is critical. Prior to generating recombinant scFvs, a recombinant TbYDV Rep was produced in E. coli to act as a control to enable the screening for Rep-specific antibodies. A bacterial expression vector was constructed to express recombinant TbYDV Rep with an Nterminal His-tag (N-His-Rep). Despite investigating several purification techniques including Ni-NTA, anion exchange, hydrophobic interaction and size exclusion chromatography, N-His-Rep could only be partially purified using a Ni-NTA column under native conditions. Although it was not certain that this recombinant N-His-Rep had the same conformation as the native TbYDV Rep and was functional, results from an electromobility shift assay (EMSA) showed that N-His-Rep was able to interact with the TbYDV LIR and was, therefore, possibly functional. Two hybridoma cell lines from mice, immunised with a synthetic peptide containing the TbYDV Rep motif III amino acid sequence, were generated by GenScript (USA). Monoclonal antibodies secreted by the two hybridoma cell lines were first screened against denatured N-His-Rep in Western analysis. After demonstrating their ability to bind N-His-Rep, two scFvs (scFv1 and scFv2) were generated using a PCR-based approach. Whereas the variable heavy chain (VH) from both cell lines could be amplified, only the variable light chain (VL) from cell line 2 was amplified. As a result, scFv1 contained VH and VL from cell line 1, whereas scFv2 contained VH from cell line 2 and VL from cell line 1. Both scFvs were first expressed in E. coli in order to evaluate their affinity to the recombinant TbYDV N-His-Rep. The preliminary results demonstrated that both scFvs were able to bind to the denatured N-His-Rep. However, EMSAs revealed that only scFv2 was able to bind to native N-His-Rep and prevent it from interacting with the TbYDV LIR. Each scFv was cloned into plant expression vectors and co-bombarded into NT-1 cells with the TbYDV-based InPAct GUS expression vector and pBT1-Rep to examine whether the scFvs could prevent Rep from mediating RCR. Although it was expected that the addition of the scFvs would result in decreased GUS expression, GUS expression was found to slightly increase. This increase was even more pronounced when the scFvs were targeted to the cell nucleus by the inclusion of the Simian virus 40 large T antigen (SV40) nuclear localisation signal (NLS). It was postulated that the scFvs were binding to a proportion of Rep, leaving a small amount available to mediate RCR. The outcomes of this project provide evidence that very high levels of recombinant protein can theoretically be expressed using InPAct vectors with judicious selection and control of viral replication proteins. However, the question of whether the scFvs generated in this project have sufficient affinity for TbYDV Rep to prevent its activity in a stably transformed plant remains unknown. It may be that other scFvs with different combinations of VH and VL may have greater affinity for TbYDV Rep. Such scFvs, when expressed at high levels in planta, might also confer resistance to TbYDV and possibly heterologous geminiviruses.
Resumo:
The refractive error of a human eye varies across the pupil and therefore may be treated as a random variable. The probability distribution of this random variable provides a means for assessing the main refractive properties of the eye without the necessity of traditional functional representation of wavefront aberrations. To demonstrate this approach, the statistical properties of refractive error maps are investigated. Closed-form expressions are derived for the probability density function (PDF) and its statistical moments for the general case of rotationally-symmetric aberrations. A closed-form expression for a PDF for a general non-rotationally symmetric wavefront aberration is difficult to derive. However, for specific cases, such as astigmatism, a closed-form expression of the PDF can be obtained. Further, interpretation of the distribution of the refractive error map as well as its moments is provided for a range of wavefront aberrations measured in real eyes. These are evaluated using a kernel density and sample moments estimators. It is concluded that the refractive error domain allows non-functional analysis of wavefront aberrations based on simple statistics in the form of its sample moments. Clinicians may find this approach to wavefront analysis easier to interpret due to the clinical familiarity and intuitive appeal of refractive error maps.
Resumo:
Ophthalmic wavefront sensors typically measure wavefront slope, from which wavefront phase is reconstructed. We show that ophthalmic prescriptions (in power-vector format) can be obtained directly from slope measurements without wavefront reconstruction. This is achieved by fitting the measurement data with a new set of orthonormal basis functions called Zernike radial slope polynomials. Coefficients of this expansion can be used to specify the ophthalmic power vector using explicit formulas derived by a variety of methods. Zernike coefficients for wavefront error can be recovered from the coefficients of radial slope polynomials, thereby offering an alternative way to perform wavefront reconstruction.
Resumo:
The eyelids play an important role in lubricating and protecting the surface of the eye. Each blink serves to spread fresh tears, remove debris and replenish the smooth optical surface of the eye. Yet little is known about how the eyelids contact the ocular surface and what pressure distribution exists between the eyelids and cornea. As the principal refractive component of the eye, the cornea is a major element of the eye’s optics. The optical properties of the cornea are known to be susceptible to the pressure exerted by the eyelids. Abnormal eyelids, due to disease, have altered pressure on the ocular surface due to changes in the shape, thickness or position of the eyelids. Normal eyelids also cause corneal distortions that are most often noticed when they are resting closer to the corneal centre (for example during reading). There were many reports of monocular diplopia after reading due to corneal distortion, but prior to videokeratoscopes these localised changes could not be measured. This thesis has measured the influence of eyelid pressure on the cornea after short-term near tasks and techniques were developed to quantify eyelid pressure and its distribution. The profile of the wave-like eyelid-induced corneal changes and the refractive effects of these distortions were investigated. Corneal topography changes due to both the upper and lower eyelids were measured for four tasks involving two angles of vertical downward gaze (20° and 40°) and two near work tasks (reading and steady fixation). After examining the depth and shape of the corneal changes, conclusions were reached regarding the magnitude and distribution of upper and lower eyelid pressure for these task conditions. The degree of downward gaze appears to alter the upper eyelid pressure on the cornea, with deeper changes occurring after greater angles of downward gaze. Although the lower eyelid was further from the corneal centre in large angles of downward gaze, its effect on the cornea was greater than that of the upper eyelid. Eyelid tilt, curvature, and position were found to be influential in the magnitude of eyelid-induced corneal changes. Refractively these corneal changes are clinically and optically significant with mean spherical and astigmatic changes of about 0.25 D after only 15 minutes of downward gaze (40° reading and steady fixation conditions). Due to the magnitude of these changes, eyelid pressure in downward gaze offers a possible explanation for some of the day-to-day variation observed in refraction. Considering the magnitude of these changes and previous work on their regression, it is recommended that sustained tasks performed in downward gaze should be avoided for at least 30 minutes before corneal and refractive assessment requiring high accuracy. Novel procedures were developed to use a thin (0.17 mm) tactile piezoresistive pressure sensor mounted on a rigid contact lens to measure eyelid pressure. A hydrostatic calibration system was constructed to convert raw digital output of the sensors to actual pressure units. Conditioning the sensor prior to use regulated the measurement response and sensor output was found to stabilise about 10 seconds after loading. The influences of various external factors on sensor output were studied. While the sensor output drifted slightly over several hours, it was not significant over the measurement time of 30 seconds used for eyelid pressure, as long as the length of the calibration and measurement recordings were matched. The error associated with calibrating at room temperature but measuring at ocular surface temperature led to a very small overestimation of pressure. To optimally position the sensor-contact lens combination under the eyelid margin, an in vivo measurement apparatus was constructed. Using this system, eyelid pressure increases were observed when the upper eyelid was placed on the sensor and a significant increase was apparent when the eyelid pressure was increased by pulling the upper eyelid tighter against the eye. For a group of young adult subjects, upper eyelid pressure was measured using this piezoresistive sensor system. Three models of contact between the eyelid and ocular surface were used to calibrate the pressure readings. The first model assumed contact between the eyelid and pressure sensor over more than the pressure cell width of 1.14 mm. Using thin pressure sensitive carbon paper placed under the eyelid, a contact imprint was measured and this width used for the second model of contact. Lastly as Marx’s line has been implicated as the region of contact with the ocular surface, its width was measured and used as the region of contact for the third model. The mean eyelid pressures calculated using these three models for the group of young subjects were 3.8 ± 0.7 mmHg (whole cell), 8.0 ± 3.4 mmHg (imprint width) and 55 ± 26 mmHg (Marx’s line). The carbon imprints using Pressurex-micro confirmed previous suggestions that a band of the eyelid margin has primary contact with the ocular surface and provided the best estimate of the contact region and hence eyelid pressure. Although it is difficult to directly compare the results with previous eyelid pressure measurement attempts, the eyelid pressure calculated using this model was slightly higher than previous manometer measurements but showed good agreement with the eyelid force estimated using an eyelid tensiometer. The work described in this thesis has shown that the eyelids have a significant influence on corneal shape, even after short-term tasks (15 minutes). Instrumentation was developed using piezoresistive sensors to measure eyelid pressure. Measurements for the upper eyelid combined with estimates of the contact region between the cornea and the eyelid enabled quantification of the upper eyelid pressure for a group of young adult subjects. These techniques will allow further investigation of the interaction between the eyelids and the surface of the eye.
Resumo:
Aims: To investigate the change that occurs in intraocular pressure (IOP) and ocular pulse amplitude (OPA) with accommodation in young adult myopes and emmetropes. Methods: Fifteen progressing myopic and 17 emmetropic young adult subjects had their IOP and OPA measured using the Pascal dynamic contour tonometer. Measurements were taken initially with accommodation relaxed, and then following 2 min of near fixation (accommodative demand 3 D). Baseline measurements of axial length and corneal thickness were also collected prior to the IOP measures. Results: IOP significantly decreased with accommodation in both the myopic and emmetropic subjects (mean change 1.861.1 mm Hg, p<0.0001). There was no significant difference (p>0.05) between myopes and emmetropes in terms of baseline IOP or the magnitude of change in IOP with accommodation. OPA also decreased significantly with accommodation (mean change for all subjects 0.560.5, p<0.0001). The myopic subjects (baseline OPA 2.060.7 mm Hg) exhibited a significantly lower baseline OPA (p¼0.004) than the emmetropes (baseline OPA 3.261.3 mm Hg),and a significantly lower magnitude of change in OPA with accommodation. Conclusion: IOP decreases significantly with accommodation, and changes similarly in progressing myopic and emmetropic subjects. However, differences found between progressing myopes and emmetropes in the mean OPA levels and the decrease in OPA associated with accommodation suggested some changes in IOP dynamics associated with myopia.
Resumo:
While spatial determinants of emmetropization have been examined extensively in animal models and spatial processing of human myopes has also been studied, there have been few studies investigating temporal aspects of emmetropization and temporal processing in human myopia. The influence of temporal light modulation on eye growth and refractive compensation has been observed in animal models and there is evidence of temporal visual processing deficits in individuals with high myopia or other pathologies. Given this, the aims of this work were to examine the relationships between myopia (i.e. degree of myopia and progression status) and temporal visual performance and to consider any temporal processing deficits in terms of the parallel retinocortical pathways. Three psychophysical studies investigating temporal processing performance were conducted in young adult myopes and non-myopes: (1) backward visual masking, (2) dot motion perception and (3) phantom contour. For each experiment there were approximately 30 young emmetropes, 30 low myopes (myopia less than 5 D) and 30 high myopes (5 to 12 D). In the backward visual masking experiment, myopes were also classified according to their progression status (30 stable myopes and 30 progressing myopes). The first study was based on the observation that the visibility of a target is reduced by a second target, termed the mask, presented quickly after the first target. Myopes were more affected by the mask when the task was biased towards the magnocellular pathway; myopes had a 25% mean reduction in performance compared with emmetropes. However, there was no difference in the effect of the mask when the task was biased towards the parvocellular system. For all test conditions, there was no significant correlation between backward visual masking task performance and either the degree of myopia or myopia progression status. The dot motion perception study measured detection thresholds for the minimum displacement of moving dots, the maximum displacement of moving dots and degree of motion coherence required to correctly determine the direction of motion. The visual processing of these tasks is dominated by the magnocellular pathway. Compared with emmetropes, high myopes had reduced ability to detect the minimum displacement of moving dots for stimuli presented at the fovea (20% higher mean threshold) and possibly at the inferior nasal retina. The minimum displacement threshold was significantly and positively correlated to myopia magnitude and axial length, and significantly and negatively correlated with retinal thickness for the inferior nasal retina. The performance of emmetropes and myopes for all the other dot motion perception tasks were similar. In the phantom contour study, the highest temporal frequency of the flickering phantom pattern at which the contour was visible was determined. Myopes had significantly lower flicker detection limits (21.8 ± 7.1 Hz) than emmetropes (25.6 ± 8.8 Hz) for tasks biased towards the magnocellular pathway for both high (99%) and low (5%) contrast stimuli. There was no difference in flicker limits for a phantom contour task biased towards the parvocellular pathway. For all phantom contour tasks, there was no significant correlation between flicker detection thresholds and magnitude of myopia. Of the psychophysical temporal tasks studied here those primarily involving processing by the magnocellular pathway revealed differences in performance of the refractive error groups. While there are a number of interpretations for this data, this suggests that there may be a temporal processing deficit in some myopes that is selective for the magnocellular system. The minimum displacement dot motion perception task appears the most sensitive test, of those studied, for investigating changes in visual temporal processing in myopia. Data from the visual masking and phantom contour tasks suggest that the alterations to temporal processing occur at an early stage of myopia development. In addition, the link between increased minimum displacement threshold and decreasing retinal thickness suggests that there is a retinal component to the observed modifications in temporal processing.
Resumo:
When classifying a signal, ideally we want our classifier to trigger a large response when it encounters a positive example and have little to no response for all other examples. Unfortunately in practice this does not occur with responses fluctuating, often causing false alarms. There exists a myriad of reasons why this is the case, most notably not incorporating the dynamics of the signal into the classification. In facial expression recognition, this has been highlighted as one major research question. In this paper we present a novel technique which incorporates the dynamics of the signal which can produce a strong response when the peak expression is found and essentially suppresses all other responses as much as possible. We conducted preliminary experiments on the extended Cohn-Kanade (CK+) database which shows its benefits. The ability to automatically and accurately recognize facial expressions of drivers is highly relevant to the automobile. For example, the early recognition of “surprise” could indicate that an accident is about to occur; and various safeguards could immediately be deployed to avoid or minimize injury and damage. In this paper, we conducted initial experiments on the extended Cohn-Kanade (CK+) database which shows its benefits.