696 resultados para Engineering, Industrial|Engineering, System Science|Operations Research
Resumo:
In this paper, we present a ∑GIi/D/1/∞ queue with heterogeneous input/output slot times. This queueing model can be regarded as an extension of the ordinary GI/D/1/∞ model. For this ∑GIi/D/1/∞ queue, we assume that several input streams arrive at the system according to different slot times. In other words, there are different slot times for different input/output processes in the queueing model. The queueing model can therefore be used for an ATM multiplexer with heterogeneous input/output link capacities. Several cases of the queueing model are discussed to reflect different relationships among the input/output link capacities of an ATM multiplexer. In the queueing analysis, two approaches: the Markov model and the probability generating function technique, are adopted to develop the queue length distributions observed at different epochs. This model is particularly useful in the performance analysis of ATM multiplexers with heterogeneous input/output link capacities.
Resumo:
This study investigates the application of local search methods on the railway junction traffic conflict-resolution problem, with the objective of attaining a quick and reasonable solution. A procedure based on local search relies on finding a better solution than the current one by a search in the neighbourhood of the current one. The structure of neighbourhood is therefore very important to an efficient local search procedure. In this paper, the formulation of the structure of the solution, which is the right-of-way sequence assignment, is first described. Two new neighbourhood definitions are then proposed and the performance of the corresponding local search procedures is evaluated by simulation. It has been shown that they provide similar results but they can be used to handle different traffic conditions and system requirements.
Resumo:
Traffic control at a road junction by a complex fuzzy logic controller is investigated. The increase in the complexity of junction means more number of input variables must be taken into account, which will increase the number of fuzzy rules in the system. A hierarchical fuzzy logic controller is introduced to reduce the number of rules. Besides, the increase in the complexity of the controller makes formulation of the fuzzy rules difficult. A genetic algorithm based off-line leaning algorithm is employed to generate the fuzzy rules. The learning algorithm uses constant flow-rates as training sets. The system is tested by both constant and time-varying flow-rates. Simulation results show that the proposed controller produces lower average delay than a fixed-time controller does under various traffic conditions.
Resumo:
Planning on utilization of train-set is one of the key tasks of transport organization for passenger dedicated railway in China. It also has strong relationships with timetable scheduling and operation plans at a station. To execute such a task in a railway hub pooling multiple railway lines, the characteristics of multiple routing for train-set is discussed in term of semicircle of train-sets' turnover. In programming the described problem, the minimum dwell time is selected as the objectives with special derive constraints of the train-set's dispatch, the connecting conditions, the principle of uniqueness for train-sets, and the first plus for connection in the same direction based on time tolerance σ. A compact connection algorithm based on time tolerance is then designed. The feasibility of the model and the algorithm is proved by the case study. The result indicates that the circulation model and algorithm about multiple routing can deal with the connections between the train-sets of multiple directions, and reduce the train's pulling in or leaving impact on the station's throat.
Resumo:
In open railway markets, coordinating train schedules at an interchange station requires negotiation between two independent train operating companies to resolve their operational conflicts. This paper models the stakeholders as software agents and proposes an agent negotiation model to study their interaction. Three negotiation strategies have been devised to represent the possible objectives of the stakeholders, and they determine the behavior in proposing offers to the proponent. Empirical simulation results confirm that the use of the proposed negotiation strategies lead to outcomes that are consistent with the objectives of the stakeholders.
Resumo:
In this paper, three metaheuristics are proposed for solving a class of job shop, open shop, and mixed shop scheduling problems. We evaluate the performance of the proposed algorithms by means of a set of Lawrence’s benchmark instances for the job shop problem, a set of randomly generated instances for the open shop problem, and a combined job shop and open shop test data for the mixed shop problem. The computational results show that the proposed algorithms perform extremely well on all these three types of shop scheduling problems. The results also reveal that the mixed shop problem is relatively easier to solve than the job shop problem due to the fact that the scheduling procedure becomes more flexible by the inclusion of more open shop jobs in the mixed shop.
Resumo:
Earthwork planning has been considered in this article and a generic block partitioning and modelling approach has been devised to provide strategic plans of various levels of detail. Conceptually this approach is more accurate and comprehensive than others, for instance those that are section based. In response to environmental concerns the metric for decision making was fuel consumption and emissions. Haulage distance and gradient are also included as they are important components of these metrics. Advantageously the fuel consumption metric is generic and captures the physical difficulties of travelling over inclines of different gradients, that is consistent across all hauling vehicles. For validation, the proposed models and techniques have been applied to a real world road project. The numerical investigations have demonstrated that the models can be solved with relatively little CPU time. The proposed block models also result in solutions of superior quality, i.e. they have reduced fuel consumption and cost. Furthermore the plans differ considerably from those based solely upon a distance based metric thus demonstrating a need for industry to reflect upon their current practices.
Resumo:
Addressing the Crew Scheduling Problem (CSP) in transportation systems can be too complex to capture all details. The designed models usually ignore or simplify features which are difficult to formulate. This paper proposes an alternative formulation using a Mixed Integer Programming (MIP) approach to the problem. The optimisation model integrates the two phases of pairing generation and pairing optimisation by simultaneously sequencing trips into feasible duties and minimising total elapsed time of any duty. Crew scheduling constraints in which the crew have to return to their home depot at the end of the shift are included in the model. The flexibility of this model comes in the inclusion of the time interval of relief opportunities, allowing the crew to be relieved during a finite time interval. This will enhance the robustness of the schedule and provide a better representation of real-world conditions.
Resumo:
In this article an alternate sensitivity analysis is proposed for train schedules. It characterises the schedules robustness or lack thereof and provides unique profiles of performance for different sources of delay and for different values of delay. An approach like this is necessary because train schedules are only a prediction of what will actually happen. They can perform poorly with respect to a variety of performance metrics, when deviations and other delays occur, if for instance they can even be implemented, and as originally intended. The information provided by this analytical approach is beneficial because it can be used as part of a proactive scheduling approach to alter a schedule in advance or to identify suitable courses of action for specific “bad behaviour”. Furthermore this information may be used to quantify the cost of delay. The effect of sectional running time (SRT) deviations and additional dwell time in particular were quantified for three railway schedule performance measures. The key features of this approach were demonstrated in a case study.
Resumo:
The increase in data center dependent services has made energy optimization of data centers one of the most exigent challenges in today's Information Age. The necessity of green and energy-efficient measures is very high for reducing carbon footprint and exorbitant energy costs. However, inefficient application management of data centers results in high energy consumption and low resource utilization efficiency. Unfortunately, in most cases, deploying an energy-efficient application management solution inevitably degrades the resource utilization efficiency of the data centers. To address this problem, a Penalty-based Genetic Algorithm (GA) is presented in this paper to solve a defined profile-based application assignment problem whilst maintaining a trade-off between the power consumption performance and resource utilization performance. Case studies show that the penalty-based GA is highly scalable and provides 16% to 32% better solutions than a greedy algorithm.
Resumo:
Analytical techniques for measuring and planning railway capacity expansion activities have been considered in this article. A preliminary mathematical framework involving track duplication and section sub divisions is proposed for this task. In railways these features have a great effect on network performance and for this reason they have been considered. Additional motivations have also arisen from the limitations of prior models that have not included them.
Resumo:
This study presents a comprehensive mathematical formulation model for a short-term open-pit mine block sequencing problem, which considers nearly all relevant technical aspects in open-pit mining. The proposed model aims to obtain the optimum extraction sequences of the original-size (smallest) blocks over short time intervals and in the presence of real-life constraints, including precedence relationship, machine capacity, grade requirements, processing demands and stockpile management. A hybrid branch-and-bound and simulated annealing algorithm is developed to solve the problem. Computational experiments show that the proposed methodology is a promising way to provide quantitative recommendations for mine planning and scheduling engineers.