110 resultados para Elastische Deformation
Resumo:
Introduction: The plantar heel pad is a specialized fibroadipose tissue that attenuates and, in part, dissipates the impact energy associated with heel strike. Although near maximal deformation of the heel pad has been shown during running, in vivo measurement of the deformation and structural properties of the heel pad during walking remains largely unexplored. This study employed a fluoroscope, synchronized with a pressure platform, to obtain force–deformation data for the heel pad during walking. Methods: Dynamic lateral foot radiographs were acquired from 6 male and 10 female adults (age, 45 ± 10 yrs; height, 1.66 ± 0.10 m; and weight, 80.7 ± 10.8 kg), while walking barefoot at preferred speeds. The inferior aspect of the calcaneus was digitized and the sagittal thickness and deformation of the heel pad relative to the support surface calculated. Simultaneous measurement of the peak force beneath the heel was used to estimate the principal structural properties of the heel pad. Results: Transient loading profiles associated with walking induced rapidly changing deformation rates in the heel pad and resulted in irregular load–deformation curves. The initial stiffness (32 ± 11 N.mm-1) of the heel pad was an order of magnitude lower than its final stiffness (212 ± 125 N.mm-1) and on average, only 1.0 J of energy was dissipated by the heel pad with each step during walking. Peak deformation (10.3 mm) approached that predicted for the limit of pain tolerance (10.7 mm). Conclusion: These findings suggest the heel pad operates close to its pain threshold even at speeds encountered during barefoot walking and provides insight as to why barefoot runners may adopt ‘forefoot’ strike patterns that minimize heel loading.
Resumo:
This thesis is a comprehensive study of deformation and failure mechanisms in bone at nano- and micro-scale levels. It explores the mechanical behaviour of osteopontin-hydroxyapatite interfaces and mineralized collagen fibril arrays, through atomistic molecular dynamics and finite element simulations. This thesis shows some main factors contributing to the excellent material properties of bone and provides some guidelines for development of new artificial biological materials and medical implants.
Resumo:
Red blood cells (RBCs) exhibit different types of motions and deformations when the blood flows through capillaries. Interestingly, due to the complex three-dimensional structure of the RBC membrane, RBCs show three-dimensional motions and deformations in the blood flow. These motions and deformations of the RBCs highly depend on the stiffness of the RBC membrane and on the geometrical parameters of the capillary through which blood flows. However, capillaries always do not have uniform cross sections and some capillaries have stenosed segments, where cross sectional area suddenly reduces. Further, some diseases can alter the stiffness of the RBC membrane drastically. In this study, the deformation behaviour of a single three-dimensional RBC is examined, when it moves through a stenosed capillary. A three-dimensional spring network is used to model the RBC membrane. The RBC’s inside and outside fluids are discretized into a finite number of mass points and treated by smoothed particle hydrodynamics (SPH) method. The capillary is considered as a rigid tube with a stenosed section. The deformation index, mean velocity and total energy of the RBC are analysed when it flows through the stenosed capillary. Further, motion and deformation of the RBCs with different membrane stiffness (KB) are compared when they flow through the stenosed segment of the capillary. The simulation results demonstrate the RBCs are subjected to a larger deformation when they move through the stenosed part of the capillary and the RBCs with lower KBvalues easily pass through the stenosed segment of the capillary. Further, RBCs having higher KBvalues have a lower mean velocity and it leads to slow down the overall blood flow rate
Resumo:
Red blood cells (RBCs) are the most common type of cells in human blood and they exhibit different types of motions and deformed shapes in capillary flows. The behaviour of the RBCs should be studied in order to explain the RBC motion and deformation mechanism. This article presents a numerical simulation method for RBC deformation in microvessels. A two dimensional spring network model is used to represent the RBC membrane, where the elastic stretch/compression energy and the bending energy are considered with the constraint of constant RBC surface area. The forces acting on the RBC membrane are obtained from the principle of virtual work. The whole fluid domain is discretized into a finite number of particles using smoothed particle hydrodynamics concepts and the motions of all the particles are solved using Navier--Stokes equations. Minimum energy concepts are used to simulate the deformed shape of the RBC model. To verify the model, the motion of a single RBC is simulated in a Poiseuille flow and the characteristic parachute shape of the RBC is observed. Further simulations reveal that the RBC shows a tank treading motion when it flows in a linear shear flow.
Numerical investigation of motion and deformation of a single red blood cell in a stenosed capillary
Resumo:
It is generally assumed that influence of the red blood cells (RBCs) is predominant in blood rheology. The healthy RBCs are highly deformable and can thus easily squeeze through the smallest capillaries having internal diameter less than their characteristic size. On the other hand, RBCs infected by malaria or other diseases are stiffer and so less deformable. Thus it is harder for them to flow through the smallest capillaries. Therefore, it is very important to critically and realistically investigate the mechanical behavior of both healthy and infected RBCs which is a current gap in knowledge. The motion and the steady state deformed shape of the RBCs depend on many factors, such as the geometrical parameters of the capillary through which blood flows, the membrane bending stiffness and the mean velocity of the blood flow. In this study, motion and deformation of a single two-dimensional RBC in a stenosed capillary is explored by using smoothed particle hydrodynamics (SPH) method. An elastic spring network is used to model the RBC membrane, while the RBC's inside fluid and outside fluid are treated as SPH particles. The effect of RBC's membrane stiffness (kb), inlet pressure (P) and geometrical parameters of the capillary on the motion and deformation of the RBC is studied. The deformation index, RBC's mean velocity and the cell membrane energy are analyzed when the cell passes through the stenosed capillary. The simulation results demonstrate that the kb, P and the geometrical parameters of the capillary have a significant impact on the RBCs' motion and deformation in the stenosed section.
Resumo:
This work describes the development of a model of cerebral atrophic changes associated with the progression of Alzheimer's disease (AD). Linear registration, region-of-interest analysis, and voxel-based morphometry methods have all been employed to elucidate the changes observed at discrete intervals during a disease process. In addition to describing the nature of the changes, modeling disease-related changes via deformations can also provide information on temporal characteristics. In order to continuously model changes associated with AD, deformation maps from 21 patients were averaged across a novel z-score disease progression dimension based on Mini Mental State Examination (MMSE) scores. The resulting deformation maps are presented via three metrics: local volume loss (atrophy), volume (CSF) increase, and translation (interpreted as representing collapse of cortical structures). Inspection of the maps revealed significant perturbations in the deformation fields corresponding to the entorhinal cortex (EC) and hippocampus, orbitofrontal and parietal cortex, and regions surrounding the sulci and ventricular spaces, with earlier changes predominantly lateralized to the left hemisphere. These changes are consistent with results from post-mortem studies of AD.
Resumo:
We study the influence of the choice of template in tensor-based morphometry. Using 3D brain MR images from 10 monozygotic twin pairs, we defined a tensor-based distance in the log-Euclidean framework [1] between each image pair in the study. Relative to this metric, twin pairs were found to be closer to each other on average than random pairings, consistent with evidence that brain structure is under strong genetic control. We also computed the intraclass correlation and associated permutation p-value at each voxel for the determinant of the Jacobian matrix of the transformation. The cumulative distribution function (cdf) of the p-values was found at each voxel for each of the templates and compared to the null distribution. Surprisingly, there was very little difference between CDFs of statistics computed from analyses using different templates. As the brain with least log-Euclidean deformation cost, the mean template defined here avoids the blurring caused by creating a synthetic image from a population, and when selected from a large population, avoids bias by being geometrically centered, in a metric that is sensitive enough to anatomical similarity that it can even detect genetic affinity among anatomies.
Resumo:
Cyclic plastic deformation of subgrade and other engineered layers is generally not taken into account in the design of railway bridge transition zones, although the plastic deformation is the governing factor of frequent track deterioration. Actual stress behavior of fine grained subgrade/embankment layers under train traffic is, however, difficult to replicate using the conventional laboratory test apparatus and techniques. A new type of torsional simple shear apparatus, known as multi-ring shear apparatus, was therefore developed to evaluate the actual stress state and the corresponding cyclic plastic deformation characteristics of subgrade materials under moving wheel load conditions. Multi-ring shear test results has been validated using a theoretical model test results; the capability of the multi-ring shear apparatus for replicating the cyclic plastic deformation characteristics of subgrade under moving train wheel load conditions is thus established. This paper describes the effects of principal stress rotation (PSR) of the subgrade materials to the cyclic plastic deformation in a railroad and impacts of testing methods in evaluating the influence of principal stress rotation to the track deterioration of rail track.
Resumo:
Anatomically precontoured plates are commonly used to treat periarticular fractures. A well-fitting plate can be used as a tool for anatomical reduction of the fractured bone. Recent studies highlighted that some plates fit poorly for many patients due to considerable shape variations between bones of the same anatomical site. While it is impossible to design one shape that fits all, it is also burdensome for the manufacturers and hospitals to produce, store and manage multiple plate shapes without the certainty of utilization by a patient population. In this study, we investigated the number of shapes required for maximum fit within a given dataset, and if they could be obtained by manually deforming the original plate. A distal medial tibial plate was automatically positioned on 45 individual tibiae, and the optimal deformation was determined iteratively using finite element analysis simulation. Within the studied dataset, we found that: (i) 89% fit could be achieved with four shapes, (ii) 100% fit was impossible through mechanical deformation, and (iii) the deformations required to obtain the four plate shapes were safe for the stainless steel plate for further clinical use. The proposed framework is easily transferable to other orthopaedic plates.
Resumo:
This thesis developed an advanced computational model to investigate the motion and deformation properties of red blood cells in capillaries. The novel model is based on the meshfree particle methods and is capable of modelling the large deformation of red blood cells moving through blood vessels. The developed model was employed to simulate the deformation behaviour of healthy and malaria infected red blood cells as well as the motion of red blood cells in stenosed capillaries.
Resumo:
Out-of-plane behaviour of mortared and mortarless masonry walls with various forms of reinforcement, including unreinforced masonry as a base case is examined using a layered shell element based explicit finite element modelling method. Wall systems containing internal reinforcement, external surface reinforcement and intermittently laced reinforced concrete members and unreinforced masonry panels are considered. Masonry is modelled as a layer with macroscopic orthotropic properties; external reinforcing render, grout and reinforcing bars are modelled as distinct layers of the shell element. Predictions from the layered shell model have been validated using several out-of-plane experimental datasets reported in the literature. The model is used to examine the effectiveness of two retrofitting schemes for an unreinforced masonry wall.
Resumo:
Purpose: This paper reviews the apparatus used for deformation of bone fracture fixation plates during orthopaedic surgeries including surgical irons, pliers and bending press tools. This paper extends the review to various machineries in non-medical industries and adopts their suitability to clinics-related applications and also covers the evolution of orthopaedic bone plates. This review confirms that none of the studied machineries can be implemented for the deformation of bone fracture fixation plates during orthopaedic surgeries. In addition, this paper also presents the novel apparatus that are designed from scratch for this specific purpose. Several conceptual designs have been proposed and evaluated recently. It has been found that Computer Numerical Control (CNC) systems are not the golden solution to this problem and one needs to attempt to design the robotic arm system. A new design of robotic arm that can be used for facilitating orthopaedic surgeries is being completed.
Resumo:
We examine the 2D plane-strain deformation of initially round, matrix-bonded, deformable single inclusions in isothermal simple shear using a recently introduced hyperelastoviscoplastic rheology. The broad parameter space spanned by the wide range of effective viscosities, yield stresses, relaxation times, and strain rates encountered in the ductile lithosphere is explored systematically for weak and strong inclusions, the effective viscosity of which varies with respect to the matrix. Most inclusion studies to date focused on elastic or purely viscous rheologies. Comparing our results with linear-viscous inclusions in a linear-viscous matrix, we observe significantly different shape evolution of weak and strong inclusions over most of the relevant parameter space. The evolution of inclusion inclination relative to the shear plane is more strongly affected by elastic and plastic contributions to rheology in the case of strong inclusions. In addition, we found that strong inclusions deform in the transient viscoelastic stress regime at high Weissenberg numbers (≥0.01) up to bulk shear strains larger than 3. Studies using the shapes of deformed objects for finite-strain analysis or viscosity-ratio estimation should establish carefully which rheology and loading conditions reflect material and deformation properties. We suggest that relatively strong, deformable clasts in shear zones retain stored energy up to fairly high shear strains. Hence, purely viscous models of clast deformation may overlook an important contribution to the energy budget, which may drive dissipation processes within and around natural inclusions.
Resumo:
Raman spectra of chillagite, wulfenite, stolzite, scheelite and wolframite were obtained at 298 and 77 K using a Raman microprobe in combination with a thermal stage. Chillagite is a solid solution of wulfenite and stolzite. The spectra of these molybdate minerals are orientation dependent. The band at 695 cm-1 is interpreted as an antisymmetric bridging mode associated with the tungstate chain. The bands at 790 and 881 cm-1 are associated with the antisymmetric and symmetric Ag modes of terminal WO2 whereas the origin of the 806 cm-1 band remains unclear. The 4(Eg) band was absent for scheelite. The bands at 353 and 401 cm-1 are assigned as either deformation modes or as r(Bg) and (Ag) modes of terminal WO2. The band at 462 cm-1 has an equivalent band in the infrared at 455 cm-1 assigned as as(Au) of the (W2O4)n chain. The band at 508 cm-1 is assigned as sym(Bg) of the (W2O4)n chain.