32 resultados para EXAFS XANES Cu(I) Cu(II) soluzioni


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The serviceability and safety of bridges are crucial to people’s daily lives and to the national economy. Every effort should be taken to make sure that bridges function safely and properly as any damage or fault during the service life can lead to transport paralysis, catastrophic loss of property or even casualties. Nonetheless, aggressive environmental conditions, ever-increasing and changing traffic loads and aging can all contribute to bridge deterioration. With often constrained budget, it is of significance to identify bridges and bridge elements that should be given higher priority for maintenance, rehabilitation or replacement, and to select optimal strategy. Bridge health prediction is an essential underpinning science to bridge maintenance optimization, since the effectiveness of optimal maintenance decision is largely dependent on the forecasting accuracy of bridge health performance. The current approaches for bridge health prediction can be categorised into two groups: condition ratings based and structural reliability based. A comprehensive literature review has revealed the following limitations of the current modelling approaches: (1) it is not evident in literature to date that any integrated approaches exist for modelling both serviceability and safety aspects so that both performance criteria can be evaluated coherently; (2) complex system modelling approaches have not been successfully applied to bridge deterioration modelling though a bridge is a complex system composed of many inter-related bridge elements; (3) multiple bridge deterioration factors, such as deterioration dependencies among different bridge elements, observed information, maintenance actions and environmental effects have not been considered jointly; (4) the existing approaches are lacking in Bayesian updating ability to incorporate a variety of event information; (5) the assumption of series and/or parallel relationship for bridge level reliability is always held in all structural reliability estimation of bridge systems. To address the deficiencies listed above, this research proposes three novel models based on the Dynamic Object Oriented Bayesian Networks (DOOBNs) approach. Model I aims to address bridge deterioration in serviceability using condition ratings as the health index. The bridge deterioration is represented in a hierarchical relationship, in accordance with the physical structure, so that the contribution of each bridge element to bridge deterioration can be tracked. A discrete-time Markov process is employed to model deterioration of bridge elements over time. In Model II, bridge deterioration in terms of safety is addressed. The structural reliability of bridge systems is estimated from bridge elements to the entire bridge. By means of conditional probability tables (CPTs), not only series-parallel relationship but also complex probabilistic relationship in bridge systems can be effectively modelled. The structural reliability of each bridge element is evaluated from its limit state functions, considering the probability distributions of resistance and applied load. Both Models I and II are designed in three steps: modelling consideration, DOOBN development and parameters estimation. Model III integrates Models I and II to address bridge health performance in both serviceability and safety aspects jointly. The modelling of bridge ratings is modified so that every basic modelling unit denotes one physical bridge element. According to the specific materials used, the integration of condition ratings and structural reliability is implemented through critical failure modes. Three case studies have been conducted to validate the proposed models, respectively. Carefully selected data and knowledge from bridge experts, the National Bridge Inventory (NBI) and existing literature were utilised for model validation. In addition, event information was generated using simulation to demonstrate the Bayesian updating ability of the proposed models. The prediction results of condition ratings and structural reliability were presented and interpreted for basic bridge elements and the whole bridge system. The results obtained from Model II were compared with the ones obtained from traditional structural reliability methods. Overall, the prediction results demonstrate the feasibility of the proposed modelling approach for bridge health prediction and underpin the assertion that the three models can be used separately or integrated and are more effective than the current bridge deterioration modelling approaches. The primary contribution of this work is to enhance the knowledge in the field of bridge health prediction, where more comprehensive health performance in both serviceability and safety aspects are addressed jointly. The proposed models, characterised by probabilistic representation of bridge deterioration in hierarchical ways, demonstrated the effectiveness and pledge of DOOBNs approach to bridge health management. Additionally, the proposed models have significant potential for bridge maintenance optimization. Working together with advanced monitoring and inspection techniques, and a comprehensive bridge inventory, the proposed models can be used by bridge practitioners to achieve increased serviceability and safety as well as maintenance cost effectiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Sleepiness contributes to a substantial proportion of fatal and severe road crashes. Efforts to reduce the incidence of sleep-related crashes have largely focussed on driver education to promote self-regulation of driving behaviour. However, effective self-regulation requires accurate self-perception of sleepiness. The aim of this study was to assess capacity to accurately identify sleepiness, and self-regulate driving cessation, during a validated driving simulator task. Methods: Participants comprised 26 young adult drivers (20-28 years) who had open licenses. No other exclusion criteria where used. Participants were partially sleep deprived (05:00 wake up) and completed a laboratory-based hazard perception driving simulation, counterbalanced to either at mid-morning or mid-afternoon. Established physiological measures (i.e., EEG, EOG) and subjective measures (Karolinska Sleepiness Scale), previously found sensitive to changes in sleepiness levels, were utilised. Participants were instructed to ‘drive’ on the simulator until they believed that sleepiness had impaired their ability to drive safely. They were then offered a nap opportunity. Results: The mean duration of the drive before cessation was 36.1 minutes (±17.7 minutes). Subjective sleepiness increased significantly from the beginning (KSS=6.6±0.7) to the end (KSS=8.2±0.5) of the driving period. No significant differences were found for EEG spectral power measures of sleepiness (i.e., theta or alpha spectral power) from the start of the driving task to the point of cessation of driving. During the nap opportunity, 88% of the participants (23/26) were able to reach sleep onset with an average latency of 9.9 minutes (±7.5 minutes). The average nap duration was 15.1 minutes (±8.1 minutes). Sleep architecture during the nap was predominately comprised of Stages I and II (combined 92%). Discussion: Participants reported high levels of sleepiness during daytime driving after very moderate sleep restriction. They were able to report increasing sleepiness during the test period despite no observed change in standard physiological indices of sleepiness. This increased subjective sleepiness had behavioural validity as the participants had high ‘napability’ at the point of driving cessation, with most achieving some degree of subsequent sleep. This study suggests that the nature of a safety instruction (i.e. how to view sleepiness) can be a determinant of driver behaviour.