42 resultados para Droplet spectra
Resumo:
Robust hashing is an emerging field that can be used to hash certain data types in applications unsuitable for traditional cryptographic hashing methods. Traditional hashing functions have been used extensively for data/message integrity, data/message authentication, efficient file identification and password verification. These applications are possible because the hashing process is compressive, allowing for efficient comparisons in the hash domain but non-invertible meaning hashes can be used without revealing the original data. These techniques were developed with deterministic (non-changing) inputs such as files and passwords. For such data types a 1-bit or one character change can be significant, as a result the hashing process is sensitive to any change in the input. Unfortunately, there are certain applications where input data are not perfectly deterministic and minor changes cannot be avoided. Digital images and biometric features are two types of data where such changes exist but do not alter the meaning or appearance of the input. For such data types cryptographic hash functions cannot be usefully applied. In light of this, robust hashing has been developed as an alternative to cryptographic hashing and is designed to be robust to minor changes in the input. Although similar in name, robust hashing is fundamentally different from cryptographic hashing. Current robust hashing techniques are not based on cryptographic methods, but instead on pattern recognition techniques. Modern robust hashing algorithms consist of feature extraction followed by a randomization stage that introduces non-invertibility and compression, followed by quantization and binary encoding to produce a binary hash output. In order to preserve robustness of the extracted features, most randomization methods are linear and this is detrimental to the security aspects required of hash functions. Furthermore, the quantization and encoding stages used to binarize real-valued features requires the learning of appropriate quantization thresholds. How these thresholds are learnt has an important effect on hashing accuracy and the mere presence of such thresholds are a source of information leakage that can reduce hashing security. This dissertation outlines a systematic investigation of the quantization and encoding stages of robust hash functions. While existing literature has focused on the importance of quantization scheme, this research is the first to emphasise the importance of the quantizer training on both hashing accuracy and hashing security. The quantizer training process is presented in a statistical framework which allows a theoretical analysis of the effects of quantizer training on hashing performance. This is experimentally verified using a number of baseline robust image hashing algorithms over a large database of real world images. This dissertation also proposes a new randomization method for robust image hashing based on Higher Order Spectra (HOS) and Radon projections. The method is non-linear and this is an essential requirement for non-invertibility. The method is also designed to produce features more suited for quantization and encoding. The system can operate without the need for quantizer training, is more easily encoded and displays improved hashing performance when compared to existing robust image hashing algorithms. The dissertation also shows how the HOS method can be adapted to work with biometric features obtained from 2D and 3D face images.
Resumo:
The work described in this technical report is part of an ongoing project at QUT to build practical tools for the manipulation, analysis and visualisation of recordings of the natural environment. This report describes the algorithm we use to cluster the spectra in a spectrogram. The report begins with a brief description of the signal processing that prepares the spectrograms.
Resumo:
Voltammetric techniques have been introduced to monitor the formation of gold nanoparticles produced via the reaction of the amino acid glycyl-L-tyrosine with Au(III) (bromoaurate) in 0.05 M KOH conditions. The alkaline conditions facilitate amino acid binding to Au(III), inhibit the rate of reduction to Au(0), and provide an excellent supporting electrolyte for voltammetric studies. Data obtained revealed that a range of time-dependent gold solution species are involved in gold nanoparticle formation and that the order in which reagents are mixed is critical to the outcome. Concomitantly with voltammetric measurements, the properties of gold nanoparticles formed are probed by examination of electronic spectra in order to understand how the solution environment present during nanoparticle growth affects the final distribution of the nanoparticles. Images obtained by the ex situ transmission electron microscopy (TEM) technique enable the physical properties of the nanoparticles isolated in the solid state to be assessed. Use of this combination of in situ and ex situ techniques provides a versatile framework for elucidating the details of nanoparticle formation.
Resumo:
Carbon nanotips with different structures were synthesized by plasma-enhanced hot filament chemical vapor deposition and plasma-enhanced chemical vapor deposition using different deposition conditions, and they were investigated by scanning electron microscopy and Raman spectroscopy. The results indicate that the photoluminescence background of the Raman spectra is different for different carbon nanotips. Additionally, the Raman spectra of the carbon nanotips synthesized using nitrogen-containing gas precursors show a peak located at about 2120 cm-1 besides the common D and G peaks. The observed difference in the photoluminescence background is related to the growth mechanisms, structural properties, and surface morphology of a-C:H and a-C:H:N nanotips, in particular, the sizes of the emissive tips.
Resumo:
Experimentally observed optical and photoelectrical spectra of nitrogen-contaminated (unintentionally doped) nano-crystalline CVD diamond films are simulated using semi-empirical adiabatic General Skettrup Model (GSM), which presumes dominant contributions of defect states from sp 3-coordinated intra-granular carbon atoms to intra-band single electron spectrum N(E) of the material. This picture disagrees with a common viewpoint that the N(E) spectrum of the gap states in diamond powders and polycrystalline CVD films mainly originates from π and π* bonds of sp2-coordinated carbon atoms, which are distributed nearly uniformly over outer surfaces and/or interfaces of the diamond grains. The GSM predicts as well strong effect of granular morphology on the density of intra-band defect states in polycrystalline diamonds.
Resumo:
Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. HRV analysis is an important tool to observe the heart’s ability to respond to normal regulatory impulses that affect its rhythm. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. A computer-based arrhythmia detection system of cardiac states is very useful in diagnostics and disease management. In this work, we studied the identification of the HRV signals using features derived from HOS. These features were fed to the support vector machine (SVM) for classification. Our proposed system can classify the normal and other four classes of arrhythmia with an average accuracy of more than 85%.
Resumo:
The application of robotics to protein crystallization trials has resulted in the production of millions of images. Manual inspection of these images to find crystals and other interesting outcomes is a major rate-limiting step. As a result there has been intense activity in developing automated algorithms to analyse these images. The very first step for most systems that have been described in the literature is to delineate each droplet. Here, a novel approach that reaches over 97% success rate and subsecond processing times is presented. This will form the seed of a new high-throughput system to scrutinize massive crystallization campaigns automatically. © 2010 International Union of Crystallography Printed in Singapore-all rights reserved.
Resumo:
The structural characteristics of raw coal and hydrogen peroxide (H2O2)-oxidized coals were investigated using scanning electron microscopy, X-ray diffraction (XRD), Raman spectra, and Fourier transform infrared (FT-IR) spectroscopy. The results indicate that the derivative coals oxidized by H2O2 are improved noticeably in aromaticity and show an increase first and then a decrease up to the highest aromaticity at 24 h. The stacking layer number of crystalline carbon decreases and the aspect ratio (width versus stacking height) increases with an increase in oxidation time. The content of crystalline carbon shows the same change tendency as the aromaticity measured by XRD. The hydroxyl bands of oxidized coals become much stronger due to an increase in soluble fatty acids and alcohols as a result of the oxidation of the aromatic and aliphatic C‐H bonds. In addition, the derivative coals display a decrease first and then an increase in the intensity of aliphatic C‐H bond and present a diametrically opposite tendency in the aromatic C‐H bonds with an increase in oxidation time. There is good agreement with the changes of aromaticity and crystalline carbon content as measured by XRD and Raman spectra. The particle size of oxidized coals (<200 nm in width) shows a significant decrease compared with that of raw coal (1 μm). This study reveals that the optimal oxidation time is ∼24 h for improving the aromaticity and crystalline carbon content of H2O2-oxidized coals. This process can help us obtain superfine crystalline carbon materials similar to graphite in structure.
Resumo:
Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively.
Resumo:
A curvilinear thin film model is used to simulate the motion of droplets on a virtual leaf surface, with a view to better understand the retention of agricultural sprays on plants. The governing model, adapted from Roy et al. (2002 J. Fluid Mech. 454, 235–261) with the addition of a disjoining pressure term, describes the gravity- and curvature driven flow of a small droplet on a complex substrate: a cotton leaf reconstructed from digitized scan data. Coalescence is the key mechanism behind spray coating of foliage, and our simulations demonstrate that various experimentally observed coalescence behaviours can be reproduced qualitatively. By varying the contact angle over the domain, we also demonstrate that the presence of a chemical defect can act as an obstacle to the droplet’s path, causing break-up. In simulations on the virtual leaf, it is found that the movement of a typical spray size droplet is driven almost exclusively by substrate curvature gradients. It is not until droplet mass is sufficiently increased via coalescence that gravity becomes the dominating force.
Resumo:
Hand, foot and mouth disease (HFMD) is a contagious viral disease that frequently affects infants and children and present with blisters and flu-like symptoms. This disease is caused by a group of enteroviruses such as enterovirus 71 (EV71) and coxsackievirus A16 (CA16). However, unlike other HFMD causing enteroviruses, EV71 have also been shown to be associated with more severe clinical manifestation such as aseptic meningitis, brainstem and cerebellar encephalitis which may lead to cardiopulmonary failure and death. Clinically, HFMD caused by EV71 is indistinguishable from other HFMD causing enteroviruses such as CA16. Molecular diagnosis methods such as the use of real-time PCR has been used commonly for the identification of EV71. In this study, two platforms namely the real-time PCR and the droplet digital PCR were compared for the detection quantitation of known EV71 viral copy number. The results reveal accurate and consistent results between the two platforms. In summary, the droplet digital PCR was demonstrated to be a promising technology for the identification and quantitation of EV71 viral copy number.
Resumo:
The process of spray drying is applied in a number of contexts. One such application is the production of a synthetic rock used for storage of nuclear waste. To establish a framework for a model of the spray drying process for this application, we here develop a model describing evaporation from droplets of pure water, such that the model may be extended to account for the presence of colloid within the droplet. We develop a spherically-symmetric model and formulate continuum equations describing mass, momentum, and energy balance in both the liquid and gas phases from first principles. We establish appropriate boundary conditions at the surface of the droplet, including a generalised Clapeyron equation that accurately describes the temperature at the surface of the droplet. To account for experiment design, we introduce a simplified platinum ball and wire model into the system using a thin wire problem. The resulting system of equations is transformed in order to simplify a finite volume solution scheme. The results from numerical simulation are compared with data collected for validation, and the sensitivity of the model to variations in key parameters, and to the use of Clausius–Clapeyron and generalised Clapeyron equations, is investigated. Good agreement is found between the model and experimental data, despite the simplicity of the platinum phase model.