127 resultados para Drilling and boring machinery
Resumo:
The ability to forecast machinery failure is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models for forecasting machinery health based on condition data. Although these models have aided the advancement of the discipline, they have made only a limited contribution to developing an effective machinery health prognostic system. The literature review indicates that there is not yet a prognostic model that directly models and fully utilises suspended condition histories (which are very common in practice since organisations rarely allow their assets to run to failure); that effectively integrates population characteristics into prognostics for longer-range prediction in a probabilistic sense; which deduces the non-linear relationship between measured condition data and actual asset health; and which involves minimal assumptions and requirements. This work presents a novel approach to addressing the above-mentioned challenges. The proposed model consists of a feed-forward neural network, the training targets of which are asset survival probabilities estimated using a variation of the Kaplan-Meier estimator and a degradation-based failure probability density estimator. The adapted Kaplan-Meier estimator is able to model the actual survival status of individual failed units and estimate the survival probability of individual suspended units. The degradation-based failure probability density estimator, on the other hand, extracts population characteristics and computes conditional reliability from available condition histories instead of from reliability data. The estimated survival probability and the relevant condition histories are respectively presented as “training target” and “training input” to the neural network. The trained network is capable of estimating the future survival curve of a unit when a series of condition indices are inputted. Although the concept proposed may be applied to the prognosis of various machine components, rolling element bearings were chosen as the research object because rolling element bearing failure is one of the foremost causes of machinery breakdowns. Computer simulated and industry case study data were used to compare the prognostic performance of the proposed model and four control models, namely: two feed-forward neural networks with the same training function and structure as the proposed model, but neglected suspended histories; a time series prediction recurrent neural network; and a traditional Weibull distribution model. The results support the assertion that the proposed model performs better than the other four models and that it produces adaptive prediction outputs with useful representation of survival probabilities. This work presents a compelling concept for non-parametric data-driven prognosis, and for utilising available asset condition information more fully and accurately. It demonstrates that machinery health can indeed be forecasted. The proposed prognostic technique, together with ongoing advances in sensors and data-fusion techniques, and increasingly comprehensive databases of asset condition data, holds the promise for increased asset availability, maintenance cost effectiveness, operational safety and – ultimately – organisation competitiveness.
Resumo:
We describe the design and evaluation of a platform for networks of cameras in low-bandwidth, low-power sensor networks. In our work to date we have investigated two different DSP hardware/software platforms for undertaking the tasks of compression and object detection and tracking. We compare the relative merits of each of the hardware and software platforms in terms of both performance and energy consumption. Finally we discuss what we believe are the ongoing research questions for image processing in WSNs.
Resumo:
Public transportation is an environment with great potential for applying location-based services through mobile devices. This paper provides the underpinning rationale for research that will be looking at how the real-time passenger information system deployed by the Translink Transit Authority across all of South East Queensland in Australia can provide a core platform to improve commuters’ user experiences. This system relies on mobile computing and GPS technology to provide accurate information on transport vehicle locations. The proposal builds on this platform to inform the design and development of innovative social media, mobile computing and geospatial information applications. The core aim is to digitally augment the public transport environment to enhance the user experience of commuters for a more enjoyable journey.
Resumo:
Anecdotal evidence from the infrastructure and building sectors highlights issues of drugs and alcohol and its association with safety risk on construction sites. Operating machinery and mobile equipment, proximity to live traffic together with congested sites, electrical equipment and operating at heights conspire to accentuate the potential adverse impact of drugs and alcohol in the workplace. While most Australian jurisdictions have identified this as a critical safety issue, information is limited regarding the prevalence of alcohol and other drugs in the workplace and there is limited evidential guidance regarding how to effectively and efficiently address such an issue. No known study has scientifically evaluated the relationship between the use of drugs and alcohol and safety impacts in construction, and there has been only limited adoption of nationally coordinated strategies, supported by employers and employees to render it socially unacceptable to arrive at a construction workplace with impaired judgement from drugs and alcohol. A nationally consistent collaborative approach across the construction workforce - involving employers and employees; clients; unions; contractors and sub-contractors is required to engender a cultural change in the construction workforce – in a similar manner to the on-going initiative in securing a cultural change to drink-driving in our society where peer intervention and support is encouraged. This study has four key objectives. Firstly, using the standard World Health Organisation AUDIT, a national qualitative and quantitative assessment of the use of drugs and alcohol will be carried out. This will build upon similar studies carried out in the Australian energy and mining sectors. Secondly, the development of an appropriate industry policy will adopt a non-punitive and rehabilitative approach developed in consultation with employers and employees across the infrastructure and building sectors, with the aim it be adopted nationally for adoption at the construction workplace. Thirdly, an industry-specific cultural change management program will be developed through a nationally collaborative approach to reducing the risk of impaired performance on construction sites and increasing workers’ commitment to drugs and alcohol safety. Finally, an implementation plan will be developed from data gathered from both managers and construction employees. Such an approach stands to benefit not only occupational health and safety, through a greater understanding of the safety impacts of alcohol and other drugs at work, but also alcohol and drug use as a wider community health issue. This paper will provide an overview of the background and significance of the study as well as outlining the proposed methodology that will be used to evaluate the safety impacts of alcohol and other drugs in the construction industry.
Resumo:
At the centre of this research is an ethnographic study that saw the researcher embedded within the fabric of inner city life to better understand what characteristics of user activity and interaction could be enhanced by technology. The initial research indicated that the experience of traversing the city after dark unified an otherwise divergent user group through a shared concern for personal safety. Managing this fear and danger represented an important user need. We found that mobile social networking systems are not only integral for bringing people together, they can help in the process of users safely dispersing as well. We conclude, however, that at a time when the average iPhone staggers under the weight of a plethora of apps that do everything from acting as a carpenter’s level to a pregnancy predictor, we consider the potential for the functionality of a personal safety device to be embodied within a stand alone artifact.
Resumo:
Increased crash risk is associated with sedative medications and researchers and health-professionals have called for improvements to medication warnings about driving. The tiered warning system in France since 2005 indicates risk level, uses a color-coded pictogram, and advises the user to seek the advice of a doctor before driving. In Queensland, Australia, the mandatory warning on medications that may cause drowsiness advises the user not to drive or operate machinery if they self-assess that they are affected, and calls attention to possible increased impairment when combined with alcohol. Objectives The reported aims of the study were to establish and compare risk perceptions associated with the Queensland and French warnings among medication users. It was conducted to complement the work of DRUID in reviewing the effectiveness of existing campaigns and practice guidelines. Methods Medication users in France and Queensland were surveyed using warnings about driving from both contexts to compare risk perceptions associated with each label. Both samples were assessed for perceptions of the warning that carried the strongest message of risk. The Queensland study also included perceptions of the likelihood of crash and level of impairment associated with the warning. Results Findings from the French study (N = 75) indicate that when all labels were compared, the majority of respondents perceived the French Level-3 label as the strongest warning about risk concerning driving. Respondents in Queensland had significantly stronger perceptions of potential impairment to driving ability, z = -13.26, p <.000 (n = 325), and potential chance of having a crash, z = -11.87, p < .000 (n = 322), after taking a medication that displayed the strongest French warning, compared with the strongest Queensland warning. Conclusions Evidence suggests that warnings about driving displayed on medications can influence risk perceptions associated with use of medication. Further analyses will determine whether risk perceptions influence compliance with the warnings.
Resumo:
One of the main challenges of slow speed machinery condition monitoring is that the energy generated from an incipient defect is too weak to be detected by traditional vibration measurements due to its low impact energy. Acoustic emission (AE) measurement is an alternative for this as it has the ability to detect crack initiations or rubbing between moving surfaces. However, AE measurement requires high sampling frequency and consequently huge amount of data are obtained to be processed. It also requires expensive hardware to capture those data, storage and involves signal processing techniques to retrieve valuable information on the state of the machine. AE signal has been utilised for early detection of defects in bearings and gears. This paper presents an online condition monitoring (CM) system for slow speed machinery, which attempts to overcome those challenges. The system incorporates relevant signal processing techniques for slow speed CM which include noise removal techniques to enhance the signal-to-noise and peak-holding down sampling to reduce the burden of massive data handling. The analysis software works under Labview environment, which enables online remote control of data acquisition, real-time analysis, offline analysis and diagnostic trending. The system has been fully implemented on a site machine and contributing significantly to improve the maintenance efficiency and provide a safer and reliable operation.
Resumo:
This report examines the involvement of manufacturers in value-adding through service-enhancement of product offerings. This focus has been prompted by: emphasis in the knowledge-economy literature on the increasing role played by services in economic growth; and recent analysis which suggests that the most dynamic sector of many economies is an integrated manufacturing-services sector (see Part One of this report). The report initially describes the emergence of an integrated manufacturing-services sector in the context of increasingly knowledge-based economic systems. Part Two reports on the results of a survey of manufacturers in the building and construction product system, investigating their involvement in service provision. Parts Three and Four present two case studies of exemplary manufacturers involved in adding value to their manufacturing operations through services offered on building and construction projects. The report examines manufacturers of materials, products, equipment and machinery used on building and construction projects. The two case study sections of the report, in part, focus on a major project undertaken by each of the manufacturers. This project element of activity is focussed on (as opposed to wholesale or retail supply), because this area of activity involves a broader array of service-enhancement mechanisms and more complex bundling of products and services.