142 resultados para Distortional buckling
Resumo:
The LiteSteel Beam (LSB) is a new hollow flange section developed in Australia with a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. The LSB is subjected to a relatively new Lateral Distortional Buckling (LDB) mode when used as flexural members. Unlike the commonly observed lateral torsional buckling, lateral distortional buckling of LSBs is characterised by cross sectional change due to web distortion. Lateral distortional buckling causes significant moment capacity reduction for LSBs with intermediate spans. Therefore a detailed investigation was undertaken to determine the methods of reducing the effects of lateral distortional buckling in LSB flexural members. For this purpose the use of web stiffeners was investigated using finite element analyses of LSBs with different web stiffener spacing and sizes. It was found that the use of 5 mm steel plate stiffeners welded or screwed to the inner faces of the top and bottom flanges at third span points considerably reduced the lateral distortional buckling effects in LSBs. Suitable design rules were then developed to calculate the enhanced elastic lateral distortional buckling moments and the higher ultimate moment capacities of LSBs with the chosen web stiffener arrangement. This paper presents the details of this investigation and the results.
Resumo:
Load bearing Light Gauge Steel Frame (LSF) walls made of cold-formed steel studs and tracks are commonly used in residential and commercial buildings. Fire safety of these walls is essential to minimize the damage caused by fire related accidents. Past investigations on the fire performance of load bearing LSF wall systems have been limited to LSF walls made of conventional lipped channel section studs. Although structurally efficient hollow flange steel sections are available in the building industry, they are not used as LSF wall studs due to the lack of fire performance data for such walls. The hollow flange sections have torsionally rigid hollow flanges that eliminate the occurrence of local and distortional buckling to an extent, thereby increasing their structural efficiency. The weaknesses of hollow flange sections such as lower lateral distortional buckling capacity are also eliminated when they are used as studs of LSF walls as the plasterboard restraints will prevent any lateral movement. Therefore hollow flange sections can be considered as structurally more efficient studs for use in LSF wall systems. This paper reports the full scale fire tests of LSF walls made of hollow flange section studs under standard fire conditions. The frames were made of 1.6 mm thick and 150 mm deep hollow flange section studs with two closed rectangular flanges of 45 mm width x 15 mm depth. Dual plasterboards were attached on both sides of the test wall panels. The load ratio was varied and the failure times, the lateral deflections and the axial displacements of the test walls were obtained. The failure behaviour of LSF walls made of hollow flange section studs was found to be different to that of LSF walls made of conventional lipped channel section studs. The results of these fire tests show that hollow flange section studs have a higher potential in being used in load bearing LSF Walls.
Resumo:
A new cold-formed and resistance welded section known as the Hollow Flange Beam (HFB) has been developed recently in Australia. In contrast to the common lateral torsional buckling mode of I-beams, this unique section comprising two stiff triangular flanges and a slender web is susceptible to a lateral distortional buckling mode of failure involving lateral deflection, twist, and cross-section change due to web distortion. This lateral distortional buckling behavior has been shown to cause significant reduction of the available flexural capacity of HFBs. An investigation using finite element analyses and large scale experiments was carried out into the use of transverse web plate stiffeners to improve the lateral buckling capacity of HFBs. This paper presents the details of the finite element model and analytical results. The experimental procedure and results are outlined in a companion paper at this conference.
Resumo:
A new cold-formed and resistance-welded section known as the hollow flange beam (HFB) has been developed recently in Australia. In contrast to the common lateral-torsional buckling mode of I-beams, this unique section comprising two stiff triangular flanges and a slender web is susceptible to a lateral-distortional buckling mode of failure involving lateral deflection, twist, and cross-section change due to web distortion. This lateral-distortional buckling behavior has been shown to cause significant reduction of the available flexural capacity of HFBs. An investigation using finite-element analyses and large-scale experiments was carried out into the use of transverse web plate stiffeners to improve the lateral buckling capacity of HFBs. This paper presents the details of the finite-element model and analytical results. The experimental procedure and results are outlined in a companion paper.
Resumo:
The hollow flange beam (HFB) is a unique cold-formed steel section developed in Australia for use as a flexural member. Research has identified that the HFB section's flexural capacity for intermediate span members is limited by lateral distortional buckling, which is characterized by simultaneous lateral deflection, twist, and web distortion. This buckling behaviour is mainly due to the unique geometry of the section, comprising two torsionally stiff triangular flanges connected by a slender web. This paper presents a finite element analytical model suitable for non-linear analysis of HFB flexural members. The model includes all significant effects that may influence the ultimate capacity of such members, including material inelasticity, local buckling, member instability, web distortion, residual stresses, and geometric imperfections. It was found to accurately predict both the elastic lateral distortional buckling moments and the ultimate capacities of HFB flexural members, and was therefore used in the development of design curves and suitable design procedures.