310 resultados para Disk Diffusion Antimicrobial Tests
Resumo:
We revisit the classical Karman rotating disk problem. A series analysis is used to derive estimates of boundary conditions at the surface. Using these estimates, computed thermal and flow fields for large mass transfer through the disk are readily obtained using a shooting method. The relevance of the problem to practical flows is discussed briefly.
Resumo:
Mandatory numeracy tests have become commonplace in many countries, heralding a new era in school assessment. New forms of accountability and an increased emphasis on national and international standards (and benchmarks) have the potential to reshape mathematics curricula. It is noteworthy that the mathematics items used in these tests are rich in graphics. Many of the items, for example, require students to have an understanding of information graphics (e.g., maps, charts and graphs) in order to solve the tasks. This investigation classifies mathematics items in Australia’s inaugural national numeracy tests and considers the effect such standardised testing will have on practice. It is argued that the design of mathematics items are more likely to be a reliable indication of student performance if graphical, linguistic and contextual components are considered both in isolation and in integrated ways as essential elements of task design.
Resumo:
The innovation diffusion and knowledge management literature strongly supports the importance of communities of practice (COP) for enabling knowledge about how to use and adopt innovation initiatives. One of the most powerful tools for innovation diffusion is word-of-mouth wisdom from committed individuals who mentor and support each other. Close proximity for face-to-face interaction is highly effective, however, many organisations are geographically dispersed with projects being virtual linked sub-organisations using ICT to communicate. ICT has also introduced a useful facilitating technology for developing knowledge networks. This paper presents findings from a research program concentrating on ICT innovation diffusion in the Australian construction industry. One way in which ICT diffusion is taking place was found to be through within-company communities of practice. We undertook in-depth unstructured interviews with three of the major 10 to 15 contractors in Australia to discuss their ICT diffusion strategies. We discovered that in all three cases,within company networked communities of practice was a central strategy. Further, effective diffusion of ICT groupware tools can be critical in developing COP where they are geographically dispersed.
Resumo:
Construction organisations comprise geographically dispersed virtually-linked suborganisations that work together to realise projects. They increasingly do so using information and communication technology (ICT) to communicate, coordinate their activities and to solve complex problems. One salient problem they face is how to effectively use requisite ICT tools. One important tool at their disposal is the self-help group, a body of people that organically spring up to solve shared problems. The more recognised term for this organisational form is a community of practice (COP). COPs generate knowledge networks that enhance and sustain competitive advantage and they are also used to help COP members actually use ICT tools. Etienne Wenger defines communities of practice as “groups of people informally bound together by shared expertise and passion for a joint enterprise” (Wenger and Snyder 2000, p139). This ‘chicken-or-egg’ issue about needing a COP to use the tools that are needed to effective broaden COPs (beyond co-located these groups) led us to explore how best to improve the process of ICT diffusion through construction organisations— primarily using people supported by technology that improves knowledge sharing. We present insights gained from recent PhD research results in this area. A semistructured interview approach was used to collect data from ICT strategists and users in the three large Australian construction organisations that are among the 10 or so first tier companies by annual dollar turnover in Australia. The interviewees were categorised into five organisational levels: IT strategist, implementer, project or engineering manager, site engineer and foreman. The focus of the study was on the organisation and the way that it implements ICT diffusion of a groupware ICT diffusion initiative. Several types of COP networks from the three Australian cases are identified: withinorganisation COP; institutional, implementer or technical support; project manager/engineer focussed; and collegial support. Also, there are cross-organisational COPs that organically emerge as a result of people sharing an interest or experience in something significant. Firstly, an institutional network is defined as a strategic group, interested in development of technology innovation within an organisation. This COP principally links business process domain experts with an ICT strategist.
Resumo:
Our survey findings confirm that 11 factors influence information and communication technology (ICT) diffusion for experienced ICT users. We offer a model that consists of 4 groups of categories: management (M); individual (I); technology (T); and environment (E). Our conclusions reinforce the importance of a coherent ICT diffusion strategy and supportive environment. This requires substantial investment in training and collegial learning support mechanisms. This paper provides an overview of the work undertaken and an analysis of its implications for the construction industry and we provide useful insights that a wide range of construction industry professionals and contractors may find useful.
Resumo:
Rapid advances in educational and information communications technology (ICT)have encouraged some educators to move beyond traditional face to face and distance education correspondence modes toward a rich, technology mediated e-learning environment. Ready access to multimedia at the desktop has provided the opportunity for educators to develop flexible, engaging and interactive learning resources incorporating multimedia and hypermedia. However, despite this opportunity, the adoption and integration of educational technologies by academics across the tertiary sector has typically been slow. This paper presents the findings of a qualitative study that investigated factors influencing the manner in which academics adopt and integrate educational technology and ICT. The research was conducted at a regional Australian university, the University of Southern Queensland (USQ), and focused on the development of e-learning environments. These e-learning environments include a range of multimodal learning objects and multiple representations of content that seek to cater for different learning styles and modal preferences, increase interaction, improve learning outcomes, provide a more inclusive and equitable curriculum and more closely mirror the on campus learning experience. This focus of this paper is primarily on the barriers or inhibitors academics reported in the study, including institutional barriers, individual inhibitors and pedagogical concerns. Strategies for addressing these obstacles are presented and implications and recommendations for educational institutions are discussed.
Resumo:
Objectives. We tested predictions from the elaborated intrusion (EI) theory of desire, which distinguishes intrusive thoughts and elaborations, and emphasizes the importance of imagery. Secondarily, we undertook preliminary evaluations of the Alcohol Craving Experience (ACE) questionnaire, a new measure based on EI Theory. Methods. Participants (N ¼ 232) were in correspondence-based treatment trials for alcohol abuse or dependence. The study used retrospective reports obtained early in treatment using the ACE, and daily self-monitoring of urges, craving, mood and alcohol consumption. Results. The ACE displayed high internal consistency and test – retest reliability and sound relationships with self-monitored craving, and was related to Baseline alcohol dependence, but not to consumption. Imagery during craving was experienced by 81%,with 2.3 senses involved on average. More frequent imagery was associated with longer episode durations and stronger craving. Transient intrusive thoughts were reported by 87% of respondents, and were more common if they frequently attempted to stop alcohol cognitions. Associations between average daily craving and weekly consumption were seen. Depression and negative mood were associated with more frequent, stronger and longer lasting desires for alcohol. Conclusions. Results supported the distinction of automatic and controlled processes in craving, together with the importance of craving imagery. They were also consistent with prediction of consumption from cross-situational averages of craving, and with positive associations between craving and negative mood. However, this study’s retrospective reporting and correlational design require that its results be interpreted cautiously. Research using ecological momentary measures and laboratory manipulations is needed before confident inferences about causality can be made.
Resumo:
Matrix function approximation is a current focus of worldwide interest and finds application in a variety of areas of applied mathematics and statistics. In this thesis we focus on the approximation of A^(-α/2)b, where A ∈ ℝ^(n×n) is a large, sparse symmetric positive definite matrix and b ∈ ℝ^n is a vector. In particular, we will focus on matrix function techniques for sampling from Gaussian Markov random fields in applied statistics and the solution of fractional-in-space partial differential equations. Gaussian Markov random fields (GMRFs) are multivariate normal random variables characterised by a sparse precision (inverse covariance) matrix. GMRFs are popular models in computational spatial statistics as the sparse structure can be exploited, typically through the use of the sparse Cholesky decomposition, to construct fast sampling methods. It is well known, however, that for sufficiently large problems, iterative methods for solving linear systems outperform direct methods. Fractional-in-space partial differential equations arise in models of processes undergoing anomalous diffusion. Unfortunately, as the fractional Laplacian is a non-local operator, numerical methods based on the direct discretisation of these equations typically requires the solution of dense linear systems, which is impractical for fine discretisations. In this thesis, novel applications of Krylov subspace approximations to matrix functions for both of these problems are investigated. Matrix functions arise when sampling from a GMRF by noting that the Cholesky decomposition A = LL^T is, essentially, a `square root' of the precision matrix A. Therefore, we can replace the usual sampling method, which forms x = L^(-T)z, with x = A^(-1/2)z, where z is a vector of independent and identically distributed standard normal random variables. Similarly, the matrix transfer technique can be used to build solutions to the fractional Poisson equation of the form ϕn = A^(-α/2)b, where A is the finite difference approximation to the Laplacian. Hence both applications require the approximation of f(A)b, where f(t) = t^(-α/2) and A is sparse. In this thesis we will compare the Lanczos approximation, the shift-and-invert Lanczos approximation, the extended Krylov subspace method, rational approximations and the restarted Lanczos approximation for approximating matrix functions of this form. A number of new and novel results are presented in this thesis. Firstly, we prove the convergence of the matrix transfer technique for the solution of the fractional Poisson equation and we give conditions by which the finite difference discretisation can be replaced by other methods for discretising the Laplacian. We then investigate a number of methods for approximating matrix functions of the form A^(-α/2)b and investigate stopping criteria for these methods. In particular, we derive a new method for restarting the Lanczos approximation to f(A)b. We then apply these techniques to the problem of sampling from a GMRF and construct a full suite of methods for sampling conditioned on linear constraints and approximating the likelihood. Finally, we consider the problem of sampling from a generalised Matern random field, which combines our techniques for solving fractional-in-space partial differential equations with our method for sampling from GMRFs.
Resumo:
In this paper, we consider a variable-order fractional advection-diffusion equation with a nonlinear source term on a finite domain. Explicit and implicit Euler approximations for the equation are proposed. Stability and convergence of the methods are discussed. Moreover, we also present a fractional method of lines, a matrix transfer technique, and an extrapolation method for the equation. Some numerical examples are given, and the results demonstrate the effectiveness of theoretical analysis.
Resumo:
Anomalous dynamics in complex systems have gained much interest in recent years. In this paper, a two-dimensional anomalous subdiffusion equation (2D-ASDE) is considered. Two numerical methods for solving the 2D-ASDE are presented. Their stability, convergence and solvability are discussed. A new multivariate extrapolation is introduced to improve the accuracy. Finally, numerical examples are given to demonstrate the effectiveness of the schemes and confirm the theoretical analysis.
Resumo:
In this paper, we consider the variable-order nonlinear fractional diffusion equation View the MathML source where xRα(x,t) is a generalized Riesz fractional derivative of variable order View the MathML source and the nonlinear reaction term f(u,x,t) satisfies the Lipschitz condition |f(u1,x,t)-f(u2,x,t)|less-than-or-equals, slantL|u1-u2|. A new explicit finite-difference approximation is introduced. The convergence and stability of this approximation are proved. Finally, some numerical examples are provided to show that this method is computationally efficient. The proposed method and techniques are applicable to other variable-order nonlinear fractional differential equations.
Resumo:
The ‘particle size effect’ and its manifestation in abrasion still attracts considerable debate as to its origins and the ranking of its likely causes. Experiments have been conducted to study the important contribution that the formation of wear debris can have on the progression of wear. The experiments consist of unlubricated (dry) pin-on-disk tests with silicon carbide coated paper of varying particle size, with different pin material, diameter and loads. It has been observed that the influence of debris formation on wear rate is more pronounced for fine abrasives and soft-wearing materials. Consequently, it is proposed that the particle size effect can be explained in terms of geometrical scaling and the evolution of third-body effects with diminishing particle diameter.
Resumo:
Introduction: Some types of antimicrobial-coated central venous catheters (A-CVC) have been shown to be cost-effective in preventing catheter-related bloodstream infection (CR-BSI). However, not all types have been evaluated, and there are concerns over the quality and usefulness of these earlier studies. There is uncertainty amongst clinicians over which, if any, antimicrobial-coated central venous catheters to use. We re-evaluated the cost-effectiveness of all commercially available antimicrobialcoated central venous catheters for prevention of catheter-related bloodstream infection in adult intensive care unit (ICU) patients. Methods: We used a Markov decision model to compare the cost-effectiveness of antimicrobial-coated central venous catheters relative to uncoated catheters. Four catheter types were evaluated; minocycline and rifampicin (MR)-coated catheters; silver, platinum and carbon (SPC)-impregnated catheters; and two chlorhexidine and silver sulfadiazine-coated catheters, one coated on the external surface (CH/SSD (ext)) and the other coated on both surfaces (CH/SSD (int/ext)). The incremental cost per qualityadjusted life-year gained and the expected net monetary benefits were estimated for each. Uncertainty arising from data estimates, data quality and heterogeneity was explored in sensitivity analyses. Results: The baseline analysis, with no consideration of uncertainty, indicated all four types of antimicrobial-coated central venous catheters were cost-saving relative to uncoated catheters. Minocycline and rifampicin-coated catheters prevented 15 infections per 1,000 catheters and generated the greatest health benefits, 1.6 quality-adjusted life-years, and cost-savings, AUD $130,289. After considering uncertainty in the current evidence, the minocycline and rifampicin-coated catheters returned the highest incremental monetary net benefits of $948 per catheter; but there was a 62% probability of error in this conclusion. Although the minocycline and rifampicin-coated catheters had the highest monetary net benefits across multiple scenarios, the decision was always associated with high uncertainty. Conclusions: Current evidence suggests that the cost-effectiveness of using antimicrobial-coated central venous catheters within the ICU is highly uncertain. Policies to prevent catheter-related bloodstream infection amongst ICU patients should consider the cost-effectiveness of competing interventions in the light of this uncertainty. Decision makers would do well to consider the current gaps in knowledge and the complexity of producing good quality evidence in this area.
Resumo:
In recent times, light gauge cold-formed steel sections have been used extensively since they have a very high strength to weight ratio compared with thicker hot-rolled steel sections. However, they are susceptible to various buckling modes including a distortional mode and hence show complex behaviour under fire conditions. Therefore a research project based on detailed experimental studies was undertaken to investigate the distortional buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. More than 150 axial compression tests were undertaken at uniform ambient and elevated temperatures. Two types of cross sections were selected with nominal thicknesses of 0.60, 0.80, and 0.95 mm. Both low (G250) and high (G550) strength steels were used. Distortional buckling tests were conducted at six different temperatures in the range of 20 to 800°C. The ultimate loads of compression members subject to distortional buckling were then used to review the adequacy of the current design rules at ambient and elevated temperatures. This paper presents the details of this experimental study and the results.
Resumo:
Abstract—Corneal topography estimation that is based on the Placido disk principle relies on good quality of precorneal tear film and sufficiently wide eyelid (palpebral) aperture to avoid reflections from eyelashes. However, in practice, these conditions are not always fulfilled resulting in missing regions, smaller corneal coverage, and subsequently poorer estimates of corneal topography. Our aim was to enhance the standard operating range of a Placido disk videokeratoscope to obtain reliable corneal topography estimates in patients with poor tear film quality, such as encountered in those diagnosed with dry eye, and with narrower palpebral apertures as in the case of Asian subjects. This was achieved by incorporating in the instrument’s own topography estimation algorithm an image processing technique that comprises a polar-domain adaptive filter and amorphological closing operator. The experimental results from measurements of test surfaces and real corneas showed that the incorporation of the proposed technique results in better estimates of corneal topography, and, in many cases, to a significant increase in the estimated coverage area making such an enhanced videokeratoscope a better tool for clinicians.